Tuesday, 8 September 2009

Improved LTE backhaul via Alcatel-Lucent's 10G GPON


“The PON vendor landscape got interesting in the fourth quarter of 2008, with Alcatel-Lucent, Motorola, and Tellabs each grabbing 10% of worldwide revenue share, behind perennial leader Mitsubishi and the now number-two player, Fiberhome. In the fast-growing GPON segment, front-runner Alcatel-Lucent is being seriously challenged by Motorola, which increased its quarterly GPON revenue share 5 points in 4Q08. Meanwhile, the EPON segment, long dominated by Mitsubishi and Hitachi, is seeing some action as Sumitomo, Fiberhome, and Dasan Networks all moved up.” - Jeff Heynen, Directing Analyst, Broadband and Video, Infonetics Research

I have blogged a bit about GPON and Backhaul before. Click on the links if you havent seen the posts before.

During this year's Broadband World Forum Europe, Alcatel-Lucent not only shows that it masters next-generation wireline and wireless access. The company also highlights that Long Term Evolution (LTE) and next-generation passive optical networking (PON) technologies converge seamlessly for a smooth delivery of the most demanding, high-speed broadband services.

The live demonstration in Alcatel-Lucent's Paris demo center shows LTE's capability to deal with multiple concurrent video streams and fast channel change - and is complemented by a high-capacity 10G GPON backhaul solution for future-safe backhaul via fiber.

Alcatel-Lucent is at the forefront of developing cutting-edge technologies long before they are standardized. Even though the 10G GPON standards are still being ratified, Alcatel-Lucent shows it is ready - when needed - to meet the request for higher capacities in its customers' access networks.

Alcatel-Lucent is engaged in over 95 FTTH projects around the world, over 80 of which are with GPON (as-of Q2, 2009). In Gartner's latest FTTH Magic Quadrant assessment, Alcatel-Lucent was positioned in the leaders quadrant for the fiber-to-the-home space.

Alcatel-Lucent is also opening up details of its optical management and control interfaces (OMCIs) in a bid to help create a true multi-vendor gigabit passive optical networking (GPON) infrastructure.

Announced at this year's Broadband World Forum Europe in Paris, the first version of the OMCI Interoperability Implementer's Guide is aimed at helping other optical network terminal vendors integrate their hardware with Alcatel-Lucent's.

Monday, 7 September 2009

TD-SCDMA: Where are we


Interesting things are going on in the Chinese market.

A new mobile phone platform has been launched by China Mobile for it's TD-SCDMA 3G mobile phone network. In fact, it’s the first ever mobile phone operating system designed by a 3G mobile phone operator and is called Ophone. The OPhone is a linux-based terminal software platform for mobile internet.

In conjunction with the announcement for the Ophone, China Mobile announced a number of Ophone compatible handsets from Samsung, Lenovo, Phillips and Dell.

China Mobile stated that by introducing the Ophone operating system, significant savings will be made on TD-SCDMA handset design and development.

"Dopod CEO Dennis Chen said the Qilin handset is the first result of China Mobile's $7 million in subsidies to encourage TD-SCDMA handset development. Dopod has expanded investment in manpower and funding towards TD-SCDMA R&D and will release numerous high-end TD-SDCMA (sic) handsets next year."

The HTC Qilin has some pretty good genes: WM 6.5, 600MHz TI OMAP processor, 3.6" WVGA screen, GPS, 5MP camera, and CMMB Mobile TV and is apparently based on HTC's Whitestone design. The TD-SCDMA standard is China's home-grown 3G standard, which means that the Qilin won't have access to 3G networks outside of China. Having said that, HTC and China Mobile have just signed an MOU to partner up in R&D, market research, and product development, so the Qilin will be just the first in a series of handsets HTC will develop for China Mobile.

The Qilin is slated for release in December, which puts it just in time for runup to the Chinese New Year holidays.



China Mobile and LG have recently showcased the GW880, LG’s first smartphone to use the Android-based OMS (Open Mobile System) platform.

Featuring GSM and TD-SCDMA connectivity, the LG GW880 will be available via the largest Chinese mobile carrier later this year, for a price that was not announced.

The smartphone is a high-end one, as it comes with a 3.5 inch WVGA touchscreen display, 5MP camera with flash, Mobile TV, 512MB ROM and 256MB RAM.

We’re probably not going to see the LG GW880 outside China, but that’s OK, since LG is surely preparing some Android phones for other markets.

China Mobile saw its number of TD-SCDMA subscribers increase by 129,000 to 1.088 million in July. The first batch of handsets were released in May.

Nearly one half billion people subscribed to China Mobile cellular services last month, but the giant's efforts to promote a Chinese 3G standard have made little headway. The world's largest carrier grew to 498 million mobile subscribers last month, a number larger than the populations of the U.S. or the European Union. The number of subscribers using their mobile phones to play games, download music and surf the Internet also rose during the first half of the year, China Mobile said Thursday. But growth was slow for TD-SCDMA, a domestic 3G mobile standard that the government tapped China Mobile to market. Subscribers surpassed 1 million in July, continuing a slow climb upward from the launch of TD-SCDMA services in January.

China Mobile Communications Corp. aims to have as many as 80 million users of its homegrown third-generation mobile technology within two years of its initial rollout, Minister of Industry and Information Technology Li Yizhong said. Speaking at a news briefing, Li acknowledged the domestic standard isn't as developed as its more mature international rivals, but said he is confident in its commercial development.

Sunday, 6 September 2009

Youtube Clip on Dangers of driving while texting




The film tells the story of a fictional 17-year-old girl, Cassie Cowan (nickname COW), who is distracted by her mobile for a few seconds while driving with two friends.

COW – a "nice girl from a nice valleys family" – causes a devastating crash which kills her friends and another couple. The impact and its aftermath is portrayed in vivid, harrowing and bloody detail.

One girl's face hits the windscreen with sickening force. A child in the car COW crashes into asks: "When will mummy and daddy wake up?" while a baby strapped into a child seat stares unblinking and may be dead.

Actually, police had intended to commission a different film – on joyriding. But when they spoke to pupils at Tredegar comprehensive, the youngsters told them that texting while driving was a much more important issue for them.

With a budget of £10,000, film-maker Peter Watkins-Hughes was asked to write and direct the film. Local people donated props including the cars that are smashed up and the locations while Watkins-Hughes and his cast gave their time.

A 30-minute version of the film is due to be shown for the first time this autumn but Watkins-Hughes put a four-minute clip of it on YouTube (entitled COW test 001) to show it to a friend. For weeks the clip remained unnoticed by anyone but the friend and a few crew members.

Then suddenly it began to attract hits. It was copied on to other sites, attracted attention around the world and within a couple of weeks became one of the most popular viral videos. Today it was still ninth on one global viral video chart. Clips about Oasis and Jay-Z were at first and second place.

Watkins-Hughes said it felt like being in an Ealing comedy when a small Welsh community had suddenly attracted worldwide attention.

The "weirdest" moment for him was when his explanation, "We've gone for grim reality", was a quote of the day on the Time website.

Watkins-Hughes said he thought it was so powerful because the violence of the crash was shown but the film then "lingered" on the human price – the baby, the child asking about his mother and father. And the screams of COW, who survives the crash.

The film has struck such a chord in the US where the danger of texting while driving is a big issue because it is not illegal in all states. The trend in America has been to try to get the anti-texting message across more gently through humour or playing on the emotions but not showing violence.

However, one survey in the US found that 80% of people who had seen the Gwent film were less likely to text while driving than before.

In the UK, the road safety charity Brake, having been asked to watch the clip by the Guardian, praised the film-makers and said it was important to show the reality of road crashes.

Saturday, 5 September 2009

Farmers worldwide being helped by Mobile Phones Technology


Airtel has entered into a strategic tie-up with IFFCO (Indian Farmers Fertilisers Cooperative) for providing agriculture and allied information to farmers through mobile phones. The facility was formally launched by the Chief Operating Officer (Andhra Pradesh) of Bharti Airtel Limited, Rajnish Kaul, at a function at Anakapalle town, about 40 km from here on Tuesday.

Addressing a media conference on the occasion, he said that the unique facility would benefit over 10 lakh IFFCO society members of rural Andhra Pradesh by giving them access to vital information. The farmer members would be given five free voice messages on farming techniques, weather forecasts, dairy farming, animal husbandry, fertilizer availability and rural health initiatives.

Mr. Kaul said the farmers could also call a dedicated free helpline to get answers from a qualified veterinarian to their specific queries regarding the health of their animals. He said that SIM cards would be provided at subsidised rates and lifetime activation would be done for a mere Rs.47. Calls between the members would be charged at 50 paise a minute. The SIMs would be compatible with any mobile handsets and farmers could buy the handsets of their choice depending on their purchasing power. He said the facility was launched about six months ago in various districts of the State and there were already 65,000 connections.

Question Box provides a service in India and Uganda. In India, phone boxes are installed in slums and villages that connect users to operators that will answer questions. In Uganda, users can call in from any mobile phone and ask their questions. The operators have access to a repository of previously asked questions (and their answers), and they can also occasionally consult the Internet. A special search engine and database were also built specifically for the project.

Another initiative, Avaaj Otalo, provides an audio community forum for farmers in rural Gujarat, India. Working with an organization that produced a popular radio program, Otalo provides a call-in number where farmers can exchange questions and answers. Users are also able to listen to archives of the radio program.

These projects differ in that Question Box avoids having to process users' questions by adding a human listener in the loop; Avaaj Otalo avoids processing by organizing their collection of audio prompts with into a menu. Both programs, however, have yet to deal with the problem of cost because they subsidize the service for users. Otalo operates with a toll-free number and Question Box provides the phones to call from in India. In Uganda, Grameen Community Knowledge Workers provides the mobile phones.

It's easy to see why the fishermen of the southern Indian state of Kerala captured the attention of a Harvard economist when they began using mobile phones a few years ago to track prices in the markets where they sold their catch of the day. Observing how these devices can be used to promote economic growth, Robert Jensen wrote in a 2007 paper titled, "The Visible Hand(set): Mobile Phones and Market Performance in South Indian Fisheries -- The Micro and Mackerel Economics of Information," that "before mobile phones, deciding which [market] would offer the best price was sheer guesswork." With mobile phones, however, suddenly it became an information-based decision. What's more, noted Jensen (who is currently at Brown University in Rhode Island), "it's not a zero-sum trade-off." The fishermen's customers benefitted from lower prices and greater choice, and there was less waste since the fishermen could easily identify the villages that would have the greatest demand for their fish each day.

Now Jensen's "visible handset" is reaching further into rural India. Following a nationwide launch this summer of Nokia Life Tools (NLT), India's farmers can use their mobile phones to access tailored information to help them grow, harvest and sell their crops and manage their livestock. "There is no reason why farmers should not be as successful as fishermen," says Ravi Bapna, associate professor of information systems at the Carlson School of Management in Minnesota and executive director of the Centre for Information Technology and the Networked Economy at Hyderabad-based Indian School of Business (ISB).

Consider Ravindra Shinde, a farmer in Magardhokada, a village in the Nagpur district of Maharashtra. When he recently harvested 125 quintal (a quintal is 100 kilograms) of soybeans and was about to take the crop to market, the price was $32 a quintal. But then he received a message on his handset that soybean production in the U.S. and Argentina had fallen, so he held back and later sold his crop for $48 a quintal.

IN the early 1990s, I was engaged in an empirical research work relating to the nexus between mobile phone and poverty in rural Bangladesh. However, friends used to tease me and raise their eyebrows on hearing about the project and my interest at that time. This was to be expected in the early 1990s when, not to speak of the poor, even the "solvent" could not afford to have a mobile set. It was treated as a "luxury" item, only to be monopolised by the moneyed people.

My research findings on village pay phones of the Grameen Bank at that time -- and as published in international journals in subsequent years -- clearly showed that mobile phones could help the poor escape "rural penalty" (a la H. Hudson), defined as poverty mainly due to distance, poor connectivity and asymmetric information. However, as of today, about 40 percent of the rural households in Bangladesh are reported to have access to mobile phones and roughly one-fourth of the users are poor. Rickshaw pullers, fishermen, traders all use it to minimise information asymmetry and quicken communication between two points.

About a decade later, I was invited to comment on two research papers showing the impacts of mobile phones on farmers and traders in Africa.

The first paper was by Megumi Muto and Takashi Yamano, both representing JICA and Foundation for Advanced Studies on International Development (FASID). They drew upon panel data of rural Uganda where banana producers could reduce marketing costs and raise income with expansion of mobile phone coverage. The message is that the expansion of mobile networks increased market participation and sales of the perishable product, banana. More importantly, small producers and farmers in remote areas gained the most.

As information flow increases due to the expanded mobile phone coverage, the cost of crop marketing is expected to decrease, particularly in remote areas where potential marketing gains from the increased information flow is large. We indeed find that the network expansion has a larger impact in market participation in areas farther away from the district centers than in closer areas.

The second paper was presented by Jenny C. Aker of the University of California, Berkeley, on the impact of mobile phones on price dispersion of grains in Niger. Using a sequential searching model, the researcher observed that cell phones increased traders' reservation sales price and the number of markets over which they searched. This reduces price dispersion across markets. To be specific, grain price dispersion reduced by 6-7 percent and reduced intra-annual price variation by 10 percent.

What is important, and as revealed in both papers, is that every farmer need not possess a set. It could be the community, producers' organisations and others from where the price information could spread, either as a "public good" or as a "private good." A participant from the audience in that seminar informed us that in his village in Africa, a mobile phone is hung from the branch of a tree and interested persons could use it on payment of a fee. Second, even with access to mobile phones, full gains might not be reaped as farmers might need more information. The role of public authority and media in this respect is very important. Again, producers' organisations could form an information forum of their own to be more effective at bargaining than individual initiatives.

Friday, 4 September 2009

LTE Buzz from Alcatel Lucent



Alcatel-Lucent has produced a LTE Widget that provides real-time LTE news and information direct on your PC. Very useful if you want to keep a watch on breaking news and information. The widget can be downloaded from their website here.

Thursday, 3 September 2009

Samsung claims First commercial LTE Modem development


Samsung Electronics Co. Ltd., announced that it has developed the first Long Term Evolution (LTE) modem that complies with the latest standards of the 3rd Generation Partnership Project (3GPP), which were released in March 2009. Utilizing Release 8 of the 3GPP, this LTE modem is a significant upgrade from the previous standard that was released in December 2008.

The modem, branded the Kalmia, supports download speed up to 100Mbps and upload speed of 50Mbps within the 20MHz frequency bandwidth. Users of a mobile device equipped with the LTE chipset can download a high-definition movie file (800MB) in one minute at speeds of 100Mbps, while simultaneously streaming four high-definition movies with no buffering.

Samsung also announced it has successfully developed a 3G baseband modem based on the Release 7 standard with an HSPA (High Speed Packet Access) Evolution platform.

This modem, branded the Broom, allows download speeds of up to 28Mbps and upload speeds of 11.5 Mbps. This makes the Release 7 more than twice as fast as the Release 6 HSPA Service, which had a maximum download speed of 14.4Mbps.

Separately, Samsung Electronics has also developed the mobile WiMAX (IEEE 802.16e) modem chip, a product that is already resonating in the mobile market. The company has already adopted the modem into commercial WiBro handsets in Korea. With this new modem, Samsung has delivered WiMAX and LTE model solutions, which are the two major wireless mobile communications systems for the next generation. The company has also demonstrated a full lineup of modems from 2G/3G to modems for the next generation of mobile telecommunication systems with its HSDPA Evolution modems.

Samsung is also strengthening its position as a leader in mobile telecommunication system standards. Samsung currently holds the most chairman seats within the IEEE 802.16 Working Group, a WiMAX standardization association, and also chairs the WiMAX Forum, an affiliate organization. Additionally, Samsung is highly influential in securing many leading positions in other organizations such as the Technology Working Group.

At 3GPP, an association that specifies standards for LTE, Samsung ranks in the top group according to its number of contributions and has four seats in the wireless networking standardization working group executive board. Samsung has also served as the chair for two years in the steering committee of LSTI (LTE/SAE Trial Initiative), an organization that works closely with LTE. The company is also actively participating in various programs for NGMN (Next Generation Mobile Networks), a business association of global and leading mobile operators.

LTE NAS and AS states and their relation

Continuing from where we left yesterday.


As you can see that there are three different states in an LTE system we are talking about.

The first is the RRC state that goes from RRC_IDLE to RRC_CONNECTED everytime the UE needs to be connected to the eNodeB.

Once the UE is RRC_CONNECTED, it can register with the Mobility Management Entity (MME), and the EPS Mobility Management (EMM) state moves from EMM-DEREGISTERED to EMM-REGISTERED

The EPS Connection Management (ECM) state (ECM-IDLE or ECM-CONNECTED) reflects the connectivity of the UE with the Evolved Packet Core (EPC). See the Interface diagram for details.

The NAS states, and their relationship to the AS RRC states can be seen in the diagram above

I have picked up some information from: LTE: The UMTS Long Term Evolution: From Theory to Practice

Wednesday, 2 September 2009

LTE Protocol Stack

Over the weekend, I was looking in the standards for an LTE Protocol stack and none of the diagrams seemed simple enough so I made one myself.
I also found a very detailed one on Nomor Research site.


I was also looking for some details on EMM (EPS Mobility Management) and ECM (EPS Connection Management) and found couple of (expected ;) blogs that had the required information. If interested have a look here and here.

Tuesday, 1 September 2009

Mobile Phone purchase, decision process...

Ajit has brought up an interesting topic in his blog and has cross referenced my presentation on "Killer Applications or Devices".

The post titled "Do single factors drives purchase of mobile devices? If so which ones?" is I would say quite important as sometimes it drives the decision process when someone is looking for a phone.

For the first time in my life I got myself a non-Nokia phone which is a Blackberry bold. My main motivation was, I can get my work emails in better format than on other phones. I am sure some of you can argue against this but when I was getting a new phone I had half an hour to make my decision and thats what I decided :)

Anyway, have a look at Ajit's post here.

Friday, 28 August 2009

Whitepaper: Voice over LTE via Generic Access (VoLGA)

Martin Sauter has published a whitepaper on VoLGA. I havent read it as of yet but I am sure it will be an interesting read for people who are interested in learning more about Voice options in LTE.

The whitepaper can be found here.

Feel free to post comments regarding the whitepaper on Martin's blog here.

Mobile Phones to replace Alarm Clocks


More than half of Brits are now using their mobile phones as alarm clocks, an alarming development for clock traditionalists.

They fear it could mean the end for dedicated alarm clocks, which have sat dutifully on our bedside tables for 150 years.

A survey of 1,500 people found that 52% had used their mobile as an alarm clock with 21% using it to get them up in the morning each day. Of course it also means you are likely to be woken up in the early hours when your do-it-all phone starts beeping because you've received an email about viagra.

A spokesperson for Rightmobilephone.co.uk - who commissioned the study - said: "The mobile phone now plays a larger more important role in our lives. "Handsets now provide us a wealth of information on the go, schedule our social occasions and as we found for many simply ensure we get out of bed each morning.



"The mobile phone is no longer for communication only, our independent handset reviews show signs of this with consumers often praising or berating the handsets camera or music quality, discounting its ability to make calls or text."

Thursday, 27 August 2009

Security of Mobiles and Networks to be tested soon


Security researcher Karsten Nohl has issued a hacking challenge that could expose T-Mobile and AT&T cell phone users -- including Gphone and iPhone patrons -- to eavesdropping hacks within six months.

Nohl, a computer science Ph.D/ candidate from the University of Virginia, is calling for the global community of hackers to crack the encryption used on GSM phones. He plans to compile this work into a code book that can be used to decipher encrypted conversations and data that gets transmitted to and from GSM phones.

Nohl’s motive: he wants to compel the telecoms to address a security weakness that has been known for years. He estimates it will take 80 volunteer programmers six months to crunch the data to break the GSM encryption; 160 volunteers could cut that time to six weeks.“It looks like in a matter of months criminals world-wide will be able to intercept mobile phone conversations,” says Simon Bransfield-Garth, CEO of mobile security firm Cellcrypt. “The immediate impact is not just businesses and corporations, but potentially all of us who use mobile phones.”

The Chaos Computer Club has told the FT that in the couple of months it will be releasing code capable of cracking GSM with just a laptop and an antenna.

In comments made to the German edition of the Financial Times, the hacking group claims that governments, and criminals, are already using the technique which can break the encryption used to protect 2G GSM calls in near-real time using existing systems. The group says a public exposure of the technique will take place in the next month or two and allow anyone equipped with a laptop and an antenna to listen in to GSM phone calls.

GSM uses a range of algorithms for key generation, authentication, and encrypting connections. This latest crack is focused on the last element which relies on a range of algorithms known as A5 and numbered from zero to three. A5/0 indicates that no encryption is used, such as in countries still under ITAR* restrictions, A5/1 is the European standard that seems to be the target of this latest breach, A5/2 is used in the USA and generally considered weaker than A5/1, while A5/3 is the strongest of the lot and mandated by the 3G GSM standard.

GSM has been cracked before, the early algorithms used were weak and kept secret (and thus not exposed to public scrutiny), a situation made worse by network operators padding the keys with zeros to reduce the cost of SIM cards. This made a weak algorithm that relied on obscurity even weaker. But since then, the standard has proved surprisingly secure, and even today specialist equipment will take half an hour to break a call, so real-time listening to GSM calls has been restricted to James-Bond types with unlimited budgets.

But the Chaos Computer Club reckons they've found a way to share those super-spy eavesdropping capabilities with anyone, which should have implications for celebrities using mobile phones, but will probably have a more immediate impact on low-level drug dealers who've long relied on the security of GSM for their business.

All encryption breaks eventually, as computing power rises, and systems like GSM are designed with a specific lifetime during which the encryption is expected to remain secure. Changing the encryption is possible, but A5 is managed by the handset rather than the SIM and network operators have to support legacy handsets for long periods even if the latest models could be equipped with better encryption.

But the rest us will probably just hold tight until everyone is using 3G networks, at least in developed countries, where A5/3 is used and should remain secure for another decade or two.

Wednesday, 26 August 2009

Europe makes 'eCall' high priority



The European Commission has made a final call to the European governments to speed up the implementation of the 'eCall' technology that uses cellular networks to automatically alert emergency services when a road accident occurs.

Currently, the deployment of eCall is voluntary and is not being used in any EU country. The Commission warns, in a policy document, that if no significant progress is made in rolling out the system by the end of 2009 it could propose regulatory measures to make it mandatory.

The Commission has presented a policy document with a strategy for introducing an affordable in-car emergency call system in all new vehicles across Europe by 2014, starting next year. Triggered automatically, if the passengers cannot do so, eCall is claimed to be able to save up to 2,500 lives per year in the EU when fully deployed and reduce severity of injuries by 10 to 15%.




Implementing eCall needs the full collaboration of the car and telecoms industries, as well as national administrations in all EU countries who must ensure that their emergency services are equipped to handle eCalls.

Although the technology is ready and common EU-wide standards have been agreed by industry, six EU countries ( Denmark, France, Ireland, Latvia, Malta and the UK) are still not ready to commit, due to cost related concerns.

Preparing phone networks and emergency services for the roll out of eCall in cars across Europe has the full support of the European Parliament and 15 EU countries who have signed the eCall Memorandum of Understanding (Austria, Cyprus, Czech Republic, Estonia, Finland, Germany, Greece, Italy, Lithuania, Portugal, Slovakia, Slovenia, Spain, the Netherlands and Sweden) and three other European countries (Iceland, Norway and Switzerland) .

Another six countries (Belgium, Bulgaria, Hungary, Luxembourg, Romania and Poland) support eCall and are willing to sign the agreement in due time.


Before making eCall fully operational across the EU, countries must agree common standards and guidelines for harmonised deployment of the system and perform field tests putting it into practice (pilots have been launched in some EU countries, including Finland, Czech Republic, Germany, Austria, Italy, The Netherlands). Through its Competitiveness and Innovation Programme the Commission may financially support such pilots, as well as public awareness campaigns about how the technology works.

Road accidents cost the EU economy more than EUR160 billion a year. Equipping all cars in the EU with the eCall system could save EUR26 billion annually while the system' is estimated to cost less than EUR100 per car. Introducing this device will not only benefit consumers, but also businesses by enabling the car and telecoms industries to offer new upgraded applications and services (like digital tachographs or electronic tolls) based on eCall to be installed in all vehicles and use satellite positioning technology.

Monday, 24 August 2009

3G or 4G: What should India do?

The first thing I should mention as I always do, please stop calling LTE as 4G as its commonly called as 3.9G. Labelling it as 4G does make it sound better (or sexy, some would say) but its not correct. Maybe the authors who label LTE as 4G dont want to try hard and do some research or its just to make the end users panic that India has missed a complete generation of mobile technology. LTE-Advanced will be the 4G technology and its still long way away (part of Rel-10).

Last week I wrote about Indian subscribers getting taste of 3G as the state owned MTNL and BSNL have launched some services. I am not sure what has been launched but all I can say is there is a dismal takeup as of yet. I read an article today about how Motorola is testing 4G [sic] and this can spoil the governments plan of rasing Rs 35,000 crore (£4.6Billion: 1Billion = 100 crores).

People may start panicking that investing in 3G is now doomed and it can just cause problems for the operators in future. The reality though is much more simpler. In a simple sentence, I would say that going for 3G or LTE does not matter much. Read on.

Lets first get Hardware out of the way. Most of the Base Stations (NodeB's, eNodeB's, RNC, etc) have a major part as SDR's or Software Defined Radios. The advantage of this is that if you have bought a 3G Node B, with just software change it should be upgradable to LTE eNode B. I have come across quite a few products where the equipment manufacturers are claiming that their 3G equipment is fully upgradeable to LTE. I did blog about some of this in this post here.

The second point we should get out of the way is the terminology. For a layman, 3G is something that was introduced 10 years back in 2000 so its quite an obsolete technology. In reality, 3G is commonly used to refer to even the new developments within the 3G spectrum. For example some of the people may have heard of HSDPA which is actually referred to as 3.5G in the mobile domain. Similarly we have HSUPA which is 3.75G and so on. The latest development is going on around 3.8G and 3.85G as part of Release 8. In general usage 3.5G, 3.75G, etc. is referred to as 3G but its more than 3G (3G+ ;). The good thing is that this 3G+ is till evolving. Release 8 was finalised in Dec. 2008 and the terminals based on that are still being tested. It should hopefully be available soon.

So whats the difference between LTE and HSPA+ (also known as 3G even though its 3.8/3.85G). Not much I would say from a general users point of view. Please note I am not arguing about the fundamental technologies because 3G+ uses WCDMA and LTE uses OFDMA/SC-FDMA technologies. OFDM based technologies will generally be always superior to WCDMA ones but it doesnt matter much. The main enhancement that has happened with LTE as compared to 3G is that in 3G the bandwidth is fixed to 5MHz whereas in case of LTE the bandwidth is flexible and can go all the way to 20MHz. Now if we compare the data speeds in 5MHz spectrum then there may not be much difference between them. Now how many operators will be rolling out services across 20MHz bandwidth? More general case will be using 10MHz.

In case of HSPA+, there is a new feature that allows a UE to use couple of cells. In this case even though the bandwidth is 5MHz but due to Dual Cell feature the UE would effectively see 10MHz bandwidth. This will definitely enhance the speeds.

Now coming to devices. 3G/HSPA/HSPA+ technologies have evolved over quite few years. There are some nice sleek and cheap handsets available. The technology in it as been rigourously tested. As a result the handsets are quite stable and many different design and models available.

LTE is yet to come. NTT DoCoMo and Verizon will be the first one to roll it out probably end 2010. Initial plan is to roll out the dongles then handsets will the eventually arrive. The initial ones will have problems, crashes, etc. Will take atleast till 2010 to sort out everything.

The big problem with LTE as many of us know is that the standards have to support for the old style CS voice and SMS. This should be fixed in Release 9 which is going to be standardised in Dec. 2009 (Mar. 2010 practically). There are different approaches and maybe untill LTE is rolled out we wont know which of them is better.

Last thing I should mention is the spectrum. The consensus is that 3G operates in 2.1GHz spectrum mostly worldwide. LTE would initially be deployed in 2.6GHz spectrum. The digital dividend spectrum when it becomes available will also be used for LTE. Most of the devices for LTE will be designed that way. As a result, 3G will continue to operate as it is in the 2.1GHz band. The devices will always be available and will be usable for long time.

Considering all the facts above, I think 3G (HSPA/HSPA+) is the best option in India or as a matter of fact in any country that is thinking of jumping directly from 2G to LTE. When the time is right, it should not be difficult to move from 3G to LTE.

EU commits to LTE-A future


Communications industry executives have welcomed the EU's commitment to fund research work on LTE Advanced , the follow-on technology from LTE that many mobile network operators have only just started embracing, but also cautioned on the timescales involved in deploying the next generation technology.

Earlier last week, the EU said it would invest 18 million Euros ($25 million) in developing the next generation of LTE, beginning on Jan. 1, 2010.

Between 2004 and 2007, the EU supported research on optimization and standardization of LTE -- the WINNER I and II projects, run by a consortium of 41 leading European companies and universities -- with 25 million Euros.

LTE Advanced is the first version of the mobile standard that might actually match the International Telecommunication Union (ITU)'s requirements for wireless 4G networks. It promises performance in the region of 1Gbit/s downlink when the user is stationary and 100 Mbit/s on the move.

The specs for LTE Advanced are in very initial stages and will be a part of 3GPP Release 10, which is scheduled for 2011, and may slip into 2012.

LTE by itself is considered to be really a '3.9G' technology and it is LTE Advanced that will deliver on the 4G promise of minimizing differences between wired and wireless broadband speeds. LTE Advanced calls for support of peak data rates which are as high as 1Gbit/s.

The investment will provide a base for migration, as well as experience with running 4G networks - and help evaluate whether/when the upgrade to LTE Advanced will be needed.

Operators have only now started embracing LTE, and are making plans to migrate their current 3G offerings to LTE by 2012.

Sunday, 23 August 2009

4 Billion GSM-HSPA connections soon.



3G Americas, announced that GSM-HSPA is expected to reach 4 billion mobile connections worldwide in September 2009. This marks a major milestone for the industry, as no other technology innovation has ever reached a scale remotely close to its penetration level – equivalent to more than six of every ten people worldwide.

In today’s global economy, which is overshadowed by recession, it is impressive to note that in the Americas region the take-up of the 3GPP evolution from GSM to HSPA grew by more than 19 percent in the year ending June 2009 (2Q) to 561 million subscribers with a market share of 72 percent. Globally, GSM-HSPA grew by 20 percent adding nearly 645 million new connections in the same 12 months.

Equally noteworthy is the increasing number of 3G subscribers for UMTS-HSPA which has captured an annual worldwide gain of 57 percent in the year ending June 2009, according to Informa Telecoms & Media’s World Cellular Information Service. With 377 million subscriptions worldwide at the end of second quarter 2009, UMTS-HSPA added more than 137 million new connections in 12 months.

The Latin America and Caribbean region continues to experience a remarkable growth curve for subscriptions to GSM-HSPA technologies. In fact, at the end of second quarter 2009, CDMA mobile technologies saw a decline in subscriptions while GSM technologies grew at an annual rate of 22 percent to more than 433 million connections with a 90 percent share of market.

Today, there are 49 UMTS-HSPA networks commercially deployed throughout 24 countries in Latin America and the Caribbean. Worldwide, 277 commercial networks offer HSPA in 116 countries. Additionally, 11 networks have been upgraded to HSPA+. According to Informa, by the year 2012, UMTS-HSPA will reach a milestone of one billion subscribers.

Friday, 21 August 2009

Mobile Search in Future...


Interesting Blog from Mohit Agrawal on the future of Mobile search.

How is Mobile Search different?

The fundamental difference between the mobile search and PC search is the access device. The screen size of the mobile phone is a constraint and hence the internet search results need to be modified. Even the input keyboard is different and the search string could be shorter which means the search result has to be intuitive.

The second difference is in the usage pattern of mobile. Unlike PC, the mobile phone is a ubiquitous device and people normally search for “at the moment” kind of thing. This means they search for nearest restaurant, retail points, service centers or mobile content. Their need is immediate and the patience or tolerance is low. They are looking for relevant results that are actionable like they need a taxi that can reach them fast and they should be able to book the taxi using their mobile phone. This means that the result needs to be location aware and should also give the phone number of the taxi company.

Thirdly, the consumer expectations changes with the time of day for the search results e.g. an afternoon search for restaurants means that the results should be about restaurants amenable to business meetings whereas, in the evening the same search should retrieve fun places like pubs or lively music restaurants.

Lastly, the difference is in the frequency of search and the number of attempts for each search.

On PC, a surfer changes his search string multiple times before he gets the right results while on a mobile, nobody is likely to change the search string more than a couple of times. Also, people search at least 4-5 different things on PC everyday but a typical mobile internet user searches something only once in 4-5 days.

There are quite a few videos which he uses to explain the point and they are interesting watch. I strongly recommend to go and have a look at the blog.

Another thing that will become important is the advertisements within the search. If I am looking for a day out on the weekend and if I get another option while searching for my destination then I may be tempted. While out and about, search for restaurants or the nearest MacD may may give some tempting offers about from other restaurants.

I can see lots of potential in mobile search and I am sure that there are companies that are working towards them. Its just matter of time before another new player like YouTube, Facebook or Skype may become leader of this domain.

Thursday, 20 August 2009

Handset Manufacturers preparing for Ramadan

LG Electronics, third largest mobile phone vendor, has launched two new handsets exclusively equipped with integrated features that are almost tailor-made to meet the needs of Muslims in the region.

The newly launched LG GD335 and LG KP500N have special features, including a Qiblah indicator that uses an in-built longitude and latitude orientation or city references that, when used in comparison to the magnetic north, indicates the direction of the Qiblah. The two phones also come complete with Adhan and Salah prayer time alarm functions as well as Quran software, the Hijri calendar and a Zakat calculator.

With its slim 11.9 mm body, LG's KP500N is a slim and lightweight handset fully equipped with key features such as a 3.2 megapixel camera, 3D accelerometer and an Active Flash User Interface with vivid widget icons to provide easy access to commonly used functions. The LG GD335 features a 2 megapixel autofocus camera that displays photos on a high resolution 2.2 inch GVGA touchscreen. The handset also has a MP3 player and can hold up to 1GB of music, photos or data. In addition, it has Bluetooth compatability and enhanced battery capabilities through the built in light sensors.

With Ramadan approaching, the features will be a welcome benefit during the month. The phones are available at major outlets across the UAE.


Nokia has been doing its Ramadan Campaign since 2006 and they have done it again this year.

Nokia just announced that its Ramadan applications for 2009 have now become available on Ovi Store. The updated free mobile applications tailored for the Holy Month of Ramadan can now be downloaded on the compatible Nokia devices directly from Nokia’s Ovi Store.

“Last year’s applications were very well received, as we saw over 2.4 million Ramadan applications downloaded. And based on the feedback we had received from Nokia consumers, we have further enhanced the offering this year to include additional applications as well as upgrades to some of the existing features. The applications this year also support a wider range of devices, to include both touch and non-touch Nokia devices,” said Chris Braam, Vice President, Sales, Nokia Middle East and Africa.
Nokia 2009 Ramadan Applications include the following:

The Holy Quran: allows users to read, search, bookmark and listen to Quran recitation

Prayer Times: provides prayer timings and Qibla direction for 1000 cities in 200 countries, along with the ability to add, remove, update and edit any location using the GPS.

Hadeeth: gives an easy and convenient way to read the Honorable Hadeeth from Sahih Bukhari, Sahih Muslim, Riyad us-Saliheen, Holy Hadeeths and Arba’in An Nawawi.

Zakah Calculator: helps Muslims calculate Zakah on different kinds of income

Hajj and Umrah: offers a mobile guide with multimedia content and the most famous places that people can visit during Hajj and Umrah.

Mozzaker: allows mobile users to listen, search and translate a large collection of of daily Azkar and selected supplications. People can also download more Azkar and share via SMS and MMS with friends and family.

Cards: helps users create their own Mobile Greeting Cards for different occasions and send them to family and friends via SMS or MMS.

New features of this year Ramadan’s apps include Quran recitation from multiple recitors, which users can choose to download based on their preference and in MP3 form. Prayer timings and Qibla direction are provided for 1000 cities in 200 countries, along with the ability to add, remove, update and edit any location using the GPS. The new Zakah Calculator helps Muslims calculate Zakah based on their income.The Ramadan applications are developed by ASGATech, a Forum Nokia Premium Partner in the Middle East, with all content reviewed and approved by Al Azhar Al Shareef.

Ramadan applications for 2009 are compatible with a range of Nokia devices including Nokia N97, Nokia N86, Nokia E75, Nokia E66, Nokia 7210, Nokia Nokia 6730c, 6720c, , Nokia 6303, Nokia 6300, Nokia 6120c, Nokia 5800XpressMusic and Nokia 5130, . The user interface for the applications is in English, Arabic, French and Urdu.

Users can launch Ovi Store from the Download folder on the main menu on their Nokia device or access nokia.com/Ramadan on the PC. However when I tried searching for one of Nokia’s

Ramadan apps on the Ovi the search turned a null result. To make it easy for users to find the app, I recommend Nokia to feature them on the Ovi store to users in the Arab world.

You can also watch the Nokia Apps Video:


Wednesday, 19 August 2009

Greener Base stations are must for the future

Its while now since the launch of the femtocell, the small box in the home that links to the broadband network and provides a mini base station for 3G phones to improve coverage and provide some interesting new services.

UK certainly is positioned well in femtocells which are lead by two companies - ip.access in Cambridge and Ubiquisys in Swindon, UK. PicoChip in Bath is another company which is providing silicon for the vast majority of the 3G femtocell rollouts.


But there is now significant competition, both from new divisions of companies such as Pirelli, established telecoms companies such as Sagem and Alcatel-Lucent (who have joined together to provide the Vodafone femtocell) and large players such as Huawei of China which ships equipment to 60m broadband subscribers and is a major supplier to the Chinese mobile operators.

However there is new factor which start to develop from the past year or so, i.e the factor of energy costs. It’s not a secret for anybody how energy process has soared in the past few years and now the telecoms are getting affected by this as well. Energy costs, both to build and run mobile networks, are getting increasingly important. Operators use a phenomenal amount of power, 400GW - or 200,000 tons of carbon - and over half of this is on the radio access. While this seems a lot, this equates to 25kg per user, or the same as an hour's drive on the motorway.

There is now research in place in order to study the whole energy chain, from the carbon cost of building the base stations, macrocells and femtocells, to the running costs.

In my view after looking at the femtocells especially at the Green Radio at the Wireless2.0 conference in Bristol recently, it's not clear whether femtocells are a lower energy solution, even though they provide a way of filling in the network at lower cost for the operators. Having a mini base station in your home obviously brings the access point closer for the mobile phone and hence the power consumed may be less. Bit how much of this is true I don’t know.

There is no doubt that energy factor is going to have a significant impact on the design and manufacture of femtocells and traditional mobile phone cells. If, as expected, the market takes off with millions of devices, this is going to have a huge energy cost.

As mentioned by Nick Flaherty in his blog that the carbon emission will also be a challenge for the home grown suppliers to provide low energy solutions, both in operations and also in the manufacturing to provide truly green radio. And this will help the UK expertise and innovation drive green radio technologies and processes into the industry.

There is no choice for the companies to look for the alternative and green solution. As costs of deploying solar and wind power falls and energy costs rise, carriers have started looking toward green cell sites.

Once such company who is taking a lead in this prospect is Alcatel-Lucent. It’s planning to have alternative energy-powered cellsites matches that of electrically powered cell sites, which could prompt a new wave of solar-and wind-powered base stations, even in areas where an electrical connection is available. In my opinion there is no other way round as the cost of traditional energy is increasing manifolds (together with carbon emission), the price of green technology falls and networks become more efficient, using alternative energy to provide all or part of the energy at cell sites is becoming less prohibitive

Alcatel-Lucent has been working with alternative energy in wireless for five years, but it has deployed only 300 sites, mainly in Africa and the Middle East until now, which rely entirely on alternate fuels. But in the last year especially after the recent recession the alternative energy solution become a priority which resulted in a surge in interest in those technologies.

Every body in this credit crunch are finding means to cur the cost and the operators are looking to avoid the enormous costs of transporting diesel to their remote cell.

The recession has certainly given some momentum to the alternative energy cell sites and there is no doubt acceleration towards this genuine cause.

This is purely simple Economics as Electricity is a large part of an operator’s operational budget as it feeds massive quantities of power to a highly distributed network of cell sites to support not just the base station power amplifiers and radios on-site but also the air-conditioning units necessary to power them. The increase in energy costs is being largely offset with the increased power efficiencies of most vendors’ equipment. The huge site cabinets are now getting replaced with compact modular base stations, which not only consume less power but also require far less cooling. The current generation of equipment has cut power consumption between one-third and one-half. Many new radio systems also are coming equipped with energy-saving software, which powers down the base station during non-peak hours or when relatively few customers are on the cell.

Current economic climate and energy efficiency factor will definitely serve to promote green energy sooner rather than push it off to a later date. Furthermore as the market for alternative energy solutions grows in other industries the cost of the technology goes down for telecom, sending the price of solar panels and wind turbines down. Combining the above trend together with regulatory and political environments the alternative energy solution is imminently favorable as a green solution.

Tuesday, 18 August 2009

Indian subscribers getting taste of Mobile Broadband

Lots of interesting developments are happening in India at the moment. The first and the most basic being MNP or Mobile Number Portability finally becoming a reality. For the first time users will be able to move operators and retain their number. This will change the way the users will use their phones. For example most users use their mobiles as secondary phones for making calls while they give their landline numbers to important people. The reason being they are not sure how long they will stick with the current operator. If they change the operator they will get a new number. I think that this will definitely change with MNP.

MNP is not the only thing. Many operators and equipment manufacturers are waiting for the 3G spectrum auction for some time now. The auction was recently postponed for variety of reasons. The auction will let the private operators to bid for the spectrum and they can decide if they want 3G or WiMAX or LTE. The state run MTNL and BSNL have already launched 3G and in Northern India but there have been not many takers yet. Maybe the people are but sceptical right now or maybe the lack of devices. The other thing is that people are maybe not sure if the technology they invest in will be around tomorrow or not.

MTNL is keen to experiment with WiMAX but it does not want to do it alone. There are many companies in India that have developed WiMAX protocol stacks so it may be a boost for these generally small and medium sized companies if WiMAX is deployed by MTNL. The only problem with WiMAX is that there are hardly big global names with any WiMAX devices/equipment. As a reult the prices could be higher and the consumers may have less choice. 3G and LTE will help in this scenario. Qualcomm for example is already looking forward to getting a big chunck of the Indian market.

India has a very big pool of keen technologists and they will whole heartidly embrace mobile broadband and the variety of apps/mobiles but only when they know that there will be stability and reliability. Once the ball starts rolling then the snowball will turn into an avalanche. The question is not if, but when.

Sunday, 16 August 2009

DoCoMo and Verizon on track for LTE

Verizon Wireless said Friday afternoon that it has completed "successful data calls" at its Long Term Evolution (LTE) test sites in Boston and Seattle.

The data transfers were made over the 700 MHz LTE networks in Verizon's first two major city test sites. Boston and Seattle are expected to be the first two cities that will go live commercially with the pre-4G technology early in 2010. Those cities each now have 10 LTE 4G cell sites up and running on the 700 MHz spectrum.

Verizon isn't yet talking about the data connection speeds. "Everything is as the team expected... But because this is a very controlled environment we don't want to put a number out on the market yet," says company spokesman, Jeff Nelson.

This has pretty much been Verizon's stance throughout -- it doesn't want to talk about test numbers that might not have much relevance on the real networks. Tests have shown connections at anything between 50 Mbit/s to 8 Mbit/s.


NTT DoCoMo has been under intense competitive pressure in recent quarters, as the Japanese market saturates and new players enter the game. Its quarterly results showed a 15.1% decline in net profit to ¥147.4bn ($1.56bn), on revenue down 7.3% to ¥1,085 trillion ($11.46bn), even as rival Softbank enjoyed a 41.4% increase in profits on a slight revenue increase.

The main problem for DoCoMo was lower voice revenue amid increased competition and low cost tariffs - from KDDI and Softbank and also new entrant eMobile, which focuses on flat rate data services. The cellcos are engaged in a price war, which has forced all of them, especially Softbank, to launch cost cutting programs.

DoCoMo reiterated plans to launch LTE services next year, though it is pushing the deadline as far as possible - to December 2010 - determined not to have to rely on pre-standard equipment as it did for 3G with its FOMA platform. Its first roll-out will be targeted at PC cards, said CEO Ryuji Yamada, and will be extended to dual-mode 3G/LTE handsets in 2011. By 2014 it plans to provide LTE service to 50% of the population from around 20,000 base stations at a cost of between ¥300bn and ¥400bn ($3.2bn to $4.2bn).

The Japanese service will initially be aimed at PC users, with DoCoMo offering card-type terminals for laptops, said Ryuji Yamada, president and CEO of NTT DoCoMo at a Tokyo news conference. It will be expanded to include handset terminals from 2011, he said. Those terminals will be dual-mode devices that use LTE networks where available and fall back to 3G networks to provide nationwide coverage.

By 2014 the carrier plans to provide LTE service to 50 percent of Japan from around 20,000 base stations.

DoCoMo plans to invest between ¥300 billion and ¥400 billion (US$3.2 billion to $4.2 billion) during the first five years of the roll-out, said Yamada.

NTT DoCoMo was the first carrier in the world to launch a commercial 3G wireless service based on WCDMA but based on its LTE roll-out it will likely be beaten this time around by carriers in other countries.

Verizon Wireless has said it plans to launch a 60Mbps trial LTE service in two U.S. cities in late 2009, to be followed by a commercial service in 2010. European carriers are also getting behind the technology with several tests under way or planned on the continent. TeliaSonera has said it will build a commercial LTE network in Stockholm, Sweden, and in Oslo, Norway.

Saturday, 15 August 2009

Kenya gets Solar Charged Phones



Kenya is home to at least 17 million mobile-phone customers, but only one million have regular access to electricity, making it difficult to recharge a mobile phone.


But the first solar-powered handset could change Kenya's telecommunication industry.