Sunday, 4 December 2011

Wednesday, 30 November 2011

Reducing CSFB Timing with RRC R9 Optimisations

While in the initial testing CSFB timing used to be between 6-8 seconds, most Rel-8 phones can complete the CSFB procedure between 4-4.5 seconds. Unfortunately this is still a lot in terms of signalling. To reduce this in Rel-9 there is a simple optimisation that has been done.
In the RRC Connection Release message, there is a possibility to add UTRAN/GERAN System Information messages. In the picture above, I have only shown UTRA System Information but a similar picture can be drawn for GERAN.

Once all the Mandatory SIB's are sent to the UE then it can immediately camp on without the need to read any other additional system info. This will reduce the CSFB time between 1-2 seconds.

The lesser the CSFB time, the better the Quality of end user experience

Tuesday, 29 November 2011

Nice Pie Chart on different Android Devices

Click to enlarge

I guess Pie charts like these can convey more information then writing about the percentages of devices sold. Maybe we should use them more often to represent information.

Source: From a presentation by Deutsche Bank in the 4th LTE North America Conference, 8 - 9 November 2011, Dallas, Texas, USA

Sunday, 27 November 2011

Saturday, 26 November 2011

LTE Capacity Analysis


From the 4th LTE North America Conference, 8 - 9 November 2011, Dallas, Texas, USA
Presented by Bill Ingram, Cricket Communications, November 8, 2011

Wednesday, 23 November 2011

Secure Wi-Fi for Large Scale Events and Arenas

Interesting presentation from Logica on Secure WiFi. The resolution of this presentation is low for security reasons as well, I guess.
To download this presentation and other presentation from the recent event, click here.

Monday, 21 November 2011

HSDPA multiflow data transmission

From RP-111375:

HSPA based mobile internet offerings are becoming very popular and data usage is increasing rapidly. As a result, HSPA has begun to be deployed on more than one transmit antenna and/or on more than one carrier. As an example, the single cell downlink MIMO (MIMO-Physical layer) feature was introduced in Release 7. This feature allowed a NodeB to transmit two transport blocks to a single UE from the same cell on a pair of transmit antennas thus improving data rates at high geometries and providing a beamforming advantage to the UE in low geometry conditions. Subsequently, in Release-8 and Release-9, the dual cell HSDPA (DC-HSDPA) and dual band DC-HSDPA features were introduced. Both these features allow the NodeB to serve one or more users by simultaneous operation of HSDPA on two different carrier frequencies in two geographically overlapping cells, thus improving the user experience across the entire cell coverage area.

When a UE falls into the softer or soft handover coverage region of two cells on the same carrier frequency, the link from the serving HS-DSCH cell is capacity or coverage limited and the non-serving cell in its active set has available resources, it would be beneficial to schedule packets to this UE also from the non-serving cell and thereby improve this particular user’s experience.


One family of such schemes parses the incoming data for the user into multiple (restricted to two cells in the study) data streams or flows, each of which is transmitted from a different cell [8] Concurrent transmission of data from the two cells may either be permitted or the UE may be restricted to receiving data from only one cell during a given TTI. The former type of scheme is designated an aggregation scheme while the latter is termed a switching scheme. The aggregation scheme can be seen as subsuming the switching scheme at the network when scheduling to the user is restricted to the cell with better channel quality.

Figure 14 illustrates the basic multi-flow concept with both cells operating on the same carrier frequency F1.




3GPP studied different multipoint transmission options for HSDPA and documented the findings and performance gains in TR25.872 providing feasibility and performance justification for the specification work.

For more details also see:
http://www.3gpp.org/ftp/Specs/html-info/FeatureOrStudyItemFile-530034.htm
See also old blog post on Multipoint HSDPA/HSPA here.

Sunday, 20 November 2011

Do we need Fiber?


Click on the image to view full size


From a presentation by Acreo, available here.

Friday, 18 November 2011

Interoperability between LTE FDD/TDD network

In countries where FDD and TDD are both in use, it would be interesting to see Dual-mode LTE terminals that would support both TDD and FDD and it should be possible to do a reselection as well has handovers from one mode to another.

It should be noted that the Structure of TDD and FDD frames are different as shown above.

If you are wondering why we need both FDD and TDD modes in the same geographical location, its because of Spectrum being available as well as with TDD allows possibility of different UL/DL data rates which generally means more efficient use of spectrum.

Thursday, 17 November 2011

Shared Data plans anyone?

Shared plans are common in business tariffs but for some reason operators are reluctant to offer them on personal plans. With multiple devices becoming a common place, I would rather prefer to have a single plan that can be used across multiple devices rather than paying for a plan for each device.

From operator point of view, I think they would get a higher loyalty rate if they allow this as it means that if you want to change an operator, you would have to change SIM from multiple devices and some of these devices may be locked to an operator or may not work on other operators, etc.

An Infonetics Research report is embedded below:

Monday, 14 November 2011

Overcapacity or Capacity Crunch?

A Qualcomm presentation from not too long back:
And another report from the UMTS Forum that is suggesting that the data traffic will grow 67 times from 2010 to 2020, summary embedded below:

Then I came across this interesting discussion on Twitter and a blog post by Dean Bubley in Disruptive Wireless blog.

Overcapacity has been summarised in few words as: Overcooked forecasts + WiFi offload + optimisation + LTE + more spectrum + caps/tiers + well-designed apps

In the blog post Dean's mentioned about the falling data usage that has been reported by O2. I would strongly recommend reading it.

From the network point of view, I think overcapacity is better for the time being as we are prepared for the short term future. In the long run, new devices and innovative apps may suddenly start driving up the data demand again and hopefully by that time we have sorted out some more of the capacity crunch issues.

What do you think?

Another concept phone from Nokia called 'HumanForm'


Description as follows:

HumanForm was created in a joint effort between Nokia Design and Nokia Research Center to translate the most promising new nanotechnologies into meaningful user experience, prototype those for decision making; and transfer and set aspiration for future portfolio.

Project is a key to bring significant user experience benefits to the market thereby creating mindshare and value share through nanotechnology enabled experiences.

HumanForm is a visionary solution for a dynamically flexible device beyond touch screen and voice communication where technology is invisible and intuition takes over. Natural interactions are enabled with kinetic user interface.

HumanForm concept and a follow-up Nokia Kinetic Device prototype were launched in Nokia World 2011.

To learn more, visit: http://research.nokia.com/

Sunday, 13 November 2011

2nd Workshop by 3GPP and Broadband Forum

3GPP and Broadband Forum held another joint session recently. Here is the summary from that event (3BF-11046.zip)


All presentations and documents from that event is available to download and view here.

Saturday, 12 November 2011

Video on the Vision of the Future

I came across couple of videos recently on how User Interface for the future is going to be different than what we are used to. Its already getting changed as we get used to the touch screens and gesture recognition. Here is the first video that came out couple of weeks back and has already had over 2 million hits:



There is a whole blog post dedicated to this which you may be interested in, available here.

Another one is on the gesture recognition that will probably make big on the future devices including TVs.




On a lighter note, the future generation would probably just take the touch and gesture recognition for granted. Here is one such video:



Wednesday, 9 November 2011

Redirection, Reselection, Handovers and other Inter-RAT combinations in LTE


Another one from Qualcomm's 4G World presentation. You can see the number of scenarios that would have to be taken into account for; this was one of the reasons I believed SVLTE may be a good choice.

Related posts:


Tuesday, 8 November 2011

Devices may require support for over 40 RF Bands to be used universally


Interesting picture from Qualcomm presentation in 4G World that shows that for Universal use, a device may have to support over 40 RF bands (which may not be physically possible and may also be overly expensive)

Related posts:


Monday, 7 November 2011

Ericsson Video: Networked Society 'On the Brink'


In On The Brink we discuss the past, present and future of connectivity with a mix of people including David Rowan, chief editor of Wired UK; Caterina Fake, founder of Flickr; and Eric Wahlforss, the co-founder of Soundcloud. Each of the interviewees discusses the emerging opportunities being enabled by technology as we enter the Networked Society. Concepts such as borderless opportunities and creativity, new open business models, and today's 'dumb society' are brought up and discussed.

Saturday, 5 November 2011

Three quick 3GPP Videos

Balazs Bertenyi, Dealing with the data explosion: Speaking about how 3GPP manages Releases and giving details of some of the key LTE features and some new work on the horizon.



Andrew Howell, GERAN and LTE Interworking: Andrew Howell, 3GPP GERAN Chairman, gives some background on the work of the GSM/EDGE RAN groups, including GELTE and the impact of machine type communications over legacy networks in the LTE age.


See also my earlier post on GELTE here.


Atle Monrad is Chairman of the 3GPP Core Network and Terminals group. In this short film, he explains the role of the protocol groups and gives a snap shot of the latest priorities for his group.


If you want to learn more about 3GPP, see earlier blog post here.

Thursday, 3 November 2011

Femto as a Service (FaaS)

The following is from a recent Small Cells conference, presented by Colt Telecom.
I wanted to highlight the Femto as a Service (FaaS) concept as I think that this may be the way forward in future. Since multiple people have phones and devices from multiple operators and it would not be possible to have Femtocells from different operators, this may be an easy solution.

I am not exactly sure about what Spectrum would be used but I guess a better case could also have been that the Fixed operator has its own spectrum that it can use and a single Femto would allow any operator's device to connect. The Femto Core can route the call to the correct mobile operator so there would be no need for multiple femtos in a house.

Tuesday, 1 November 2011

RRC Signalling in Rel-10 for MDT

Last year I wrote about Minimization of Drive Testing (MDT) and mentioned about the possibility of enhancements. Now looking at the new RRC specs I can see a new message LoggedMeasurementsConfiguration has been added,
When the UE is in RRC_CONNECTED mode, this message can be sent and the UE be informed about the measurements to be performed. The message contents are as follows:

LoggedMeasurementConfiguration-r10 ::= SEQUENCE {
criticalExtensions CHOICE {
c1 CHOICE {
loggedMeasurementConfiguration-r10 LoggedMeasurementConfiguration-r10-IEs,
spare3 NULL, spare2 NULL, spare1 NULL
},
criticalExtensionsFuture SEQUENCE {}
}
}


LoggedMeasurementConfiguration-r10-IEs ::= SEQUENCE {
traceReference-r10 TraceReference-r10,
traceRecordingSessionRef-r10 OCTET STRING (SIZE (2)),
tce-Id-r10 OCTET STRING (SIZE (1)),
absoluteTimeInfo-r10 AbsoluteTimeInfo-r10,
areaConfiguration-r10 AreaConfiguration-r10 OPTIONAL, -- Need OR
loggingDuration-r10 LoggingDuration-r10,
loggingInterval-r10 LoggingInterval-r10,
nonCriticalExtension SEQUENCE {} OPTIONAL -- Need OP
}


Once the UE has done the measurements, it can inform the network in one of the following messages, RRCConnectionSetupComplete, RRCConnectionReestablishmentComplete, RRCConnectionReconfigurationComplete and UEInformationResponse that it has the required information available. This is done by including the following new Enum:

logMeasAvailable-r10 ENUMERATED {true} OPTIONAL,

Finally, the network can request the logged Measurements information in the UE Information Request Message. The new fields for that are:


UEInformationRequest-v1020-IEs ::= SEQUENCE {
logMeasReportReq-r10 ENUMERATED {true} OPTIONAL,
nonCriticalExtension SEQUENCE {} OPTIONAL
}

The UE would send the following information in the response message:


LogMeasInfo-r10 ::= SEQUENCE {
locationInfo-r10 LocationInfo-r10 OPTIONAL,
relativeTimeStamp-r10 INTEGER (0..7200),
servCellIdentity-r10 CellGlobalIdEUTRA,
measResultServCell-r10 SEQUENCE {
rsrpResult-r10 RSRP-Range,
rsrqResult-r10 RSRQ-Range
},
measResultNeighCells-r10 SEQUENCE {
measResultListEUTRA-r10 MeasResultList2EUTRA-r9 OPTIONAL,
measResultListUTRA-r10 MeasResultList2UTRA-r9 OPTIONAL,
measResultListGERAN-r10 MeasResultList2GERAN-r10 OPTIONAL,
measResultListCDMA2000-r10 MeasResultList2CDMA2000-r9 OPTIONAL
} OPTIONAL,
...
}


MeasResultList2GERAN-r10 ::= SEQUENCE (SIZE (1..maxCellListGERAN)) OF MeasResultListGERAN


LocationInfo-r10 ::= SEQUENCE {
locationCoordinates-r10 CHOICE {
ellipsoid-Point-r10 OCTET STRING,
ellipsoidPointWithAltitude-r10 OCTET STRING,
...
},
horizontalVelocity-r10 OCTET STRING OPTIONAL,
gnss-TOD-msec-r10 OCTET STRING OPTIONAL,
...
}

Monday, 31 October 2011

Phones with Flexible Screens in 2012


From PC World:


Samsung Electronics said Friday that it is aiming to launch mobile phones with flexible displays next year, with tablets and other portable devices to have these displays soon after.
The company said it was aiming to follow on the success of its Galaxy S II smartphone, which has now sold 10 million units in five months.
The comments came as the company discussed its earnings for the three-month period through September. Samsung said its overall profit fell 23 percent from a year ago to 3.44 trillion Korean won (US$3.1 billion), dragged down by its chip and display operations, but operating profit at its mobile unit more than doubled in the period.
"The flexible display, we are looking to introduce sometime in 2012, hopefully the earlier part," said spokesman Robert Yi during an earnings call. "The application probably will start from the handset side."
Yi said tablets and other mobile devices with flexible displays would follow.
Samsung has shown flexible OLED (organic light emitting diode) displays inside rigid cases that kept the screens curved. The technology has material within each pixel that generates light, making it perhaps more suitable for flexible screens than LCDs, which would require both a flexible screen and a backlight.

This is a Video from CES 2011 in January:



I like this concept of bendy phones. The following Nokia video shows how this could really be useful.



Toshiba shows something similar at SID 2010.


News via WebProNews.

Saturday, 29 October 2011

'Twisted Radio Waves': Could they be the way out of Spectrum Crunch?


A recent infograph from PCMag.com, summarises the Spectrum Crunch that we may be facing soon. Though in reality its not as bad as it may seem initially, we still have to find a way out of this. Carrier Aggregation can only help to a certain extent as we still need spectrum to do the aggregation.

The following is from a recent article in discover magazine:

Italian astrophysicist Fabrizio Tamburini says a solution may lie in making better use of the frequencies already in use. In a recent paper, he demonstrated a potential way to squeeze 100 times more bandwidth out of existing frequencies.

The idea is to twist radio waves like corkscrews and create multiple subfrequencies, distinguished by their degree of twistedness. Each subchannel carries discrete data sets. “You can tune the wave with a given frequency as you normally do, but there is also a fingerprint left by the twist,” Tamburini says. He and Swedish colleague Bo Thidé hit upon the approach while studying waves warped by the immense gravity of black holes. This past June, the scientists set up a custom dish in Venice and successfully broadcast video encoded in both twisted and normal radio waves across St. Mark’s Basin. (Note this type of wave-twisting is fundamentally different from the better-known circular polarization of light.)

The next step is to design small, cheap smartphone antennas that can transmit and receive the warped signals. If the industry’s appetite for bandwidth is any indication, it may not be long before twisted-radio technology shows up in your new gadgets.

If you are a Physics buff, you can check the paper out here.

The picture above is from Wikipedia section on Light orbital angular momentum.

Thursday, 27 October 2011

Femtocell Backhaul Options


Any others?

There is also this interesting presentation from Maravedis on Non-Line-of-Sight (NLoS) backhaul, embedded below:

Wednesday, 26 October 2011

New 4G Americas whitepaper on HSPA evolution in 3GPP standards

Some forecasts put HSPA at over 3.5 billion subscribers by the end of 2016. Operators with HSPA and LTE infrastructure and users with HSPA and LTE multi-mode devices will be commonplace. There are 412 commercial deployments of HSPA in 157 countries, including 165 HSPA+ networks. Thus, with the continued deployment of LTE throughout the world, and the existing ubiquitous coverage of HSPA in the world, HSPA+ will continue to be enhanced through the 3GPP standards process to provide a seamless solution for operators as they upgrade their networks. While LTE, with 33 commercial deployments to date and over 250 commitments worldwide, will be the mobile broadband next generation technology of choice for HSPA, EV-DO, WiMAX and new wireless operators, HSPA will continue to be a pivotal technology in providing mobile broadband to subscribers.

The white paper explains that as 3GPP specifications evolve, their advanced features help to further the capabilities of today’s modern mobile broadband networks. With each release there have been improvements such as better cell edge performance, increased system efficiencies, higher peak data rates and an overall improved end-user experience. 3GPP feature evolution from Rel-7 to Rel-10 has pushed possible HSPA peak data rates from 14 Mbps to 168 Mbps. Continued enhancements in 3GPP Rel-11 will again double this capability to a possible peak data rate of 336 Mbps:
  • Rel-7: 64QAM or 2X2 MIMO => 21 or 28 Mbps
  • Rel-8: DC + 64QAM or 2X2 MIMO + 64QAM => 42 Mbps
  • Rel-9: DC + 2X2 MIMO + 64QAM => 84 Mbps
  • Rel-10: 4C + 2X2 MIMO + 64QAM => 168 Mbps
  • Rel-11: (8C or 4X4 MIMO) + 64QAM => 336 Mbps
“If operators are able to gain new additional harmonized spectrum from governments, they will no doubt deploy LTE, However, it is clear that HSPA+ technology is still exceptionally strong and will continue to provide operators with the capability to meet the exploding data usage demands of their customers in existing spectrum holdings,” Pearson said.

The paper is embedded as follows:

This paper and other similar papers are available to download from the 3G4G website here.

Tuesday, 25 October 2011

Donor eNB (DeNB) and Relay Node (RN)

Extracted from 3GPP 36.300:

The eNB hosts the following functions:
- Functions for Radio Resource Management: Radio Bearer Control, Radio Admission Control, Connection Mobility Control, Dynamic allocation of resources to UEs in both uplink and downlink (scheduling);
- IP header compression and encryption of user data stream;
- Selection of an MME at UE attachment when no routing to an MME can be determined from the information provided by the UE;
- Routing of User Plane data towards Serving Gateway;
- Scheduling and transmission of paging messages (originated from the MME);
- Scheduling and transmission of broadcast information (originated from the MME or O&M);
- Measurement and measurement reporting configuration for mobility and scheduling;
- Scheduling and transmission of PWS (which includes ETWS and CMAS) messages (originated from the MME);
- CSG handling;
- Transport level packet marking in the uplink.
The DeNB hosts the following functions in addition to the eNB functions:
- S1/X2 proxy functionality for supporting RNs;
- S11 termination and S-GW/P-GW functionality for supporting RNs.

E-UTRAN supports relaying by having a Relay Node (RN) wirelessly connect to an eNB serving the RN, called Donor eNB (DeNB), via a modified version of the E-UTRA radio interface, the modified version being called the Un interface. The RN supports the eNB functionality meaning it terminates the radio protocols of the E-UTRA radio interface, and the S1 and X2 interfaces. From a specification point of view, functionality defined for eNBs, e.g. RNL and TNL, also applies to RNs unless explicitly specified. RNs do not support NNSF. In addition to the eNB functionality, the RN also supports a subset of the UE functionality, e.g. physical layer, layer-2, RRC, and NAS functionality, in order to wirelessly connect to the DeNB.

The architecture for supporting RNs is shown in Figure 4.7.2-1. The RN terminates the S1, X2 and Un interfaces. The DeNB provides S1 and X2 proxy functionality between the RN and other network nodes (other eNBs, MMEs and S GWs). The S1 and X2 proxy functionality includes passing UE-dedicated S1 and X2 signalling messages as well as GTP data packets between the S1 and X2 interfaces associated with the RN and the S1 and X2 interfaces associated with other network nodes. Due to the proxy functionality, the DeNB appears as an MME (for S1-MME), an eNB (for X2) and an S-GW (for S1-U) to the RN.

For more details see - 3GPP TS 36.300 : Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 10)

Sunday, 23 October 2011

Femtocells for Low Energy Buildings

Exactly three years back I posted an article about 'Femtocells for Radiation Proofed Homes' and when I saw this presentation by Elisa, Finland, It just validated with the research what I had mentioned. With the government push for more low energy infrastructure and at the same time the new technologies using higher frequencies, this problem is going to keep getting worse. Untill ofcourse the coming of 'Wireless Friendly Buildings'.

Elisa's presentation as follows:

Saturday, 22 October 2011

Ericsson Video: Using LTE to broadcast Danish elections



Danes elected a new parliament September 15. As four teams from TV 2 moved between party headquarters, Parliament House and celebration sites, they used standard off-the-shelf LTE terminals to upload interviews to the tv-station, which in turn broadcast the content live to viewers on their channel.

The solution is provided by operator TDC, on the network supplied and managed by Ericsson.

Friday, 21 October 2011

'Internet Trends' and 'Mobile Internet Trends' by Mary Meeker

Came across this article from InformationWeek based on this presentation by Mary Meeker. Few points to note from the article:

Mobile: Mobile subscriber growth is continuing at a pace that matches the meteoric rise of Internet adoption, a rate that puts other technologies like TV to shame. Meeker cited 35% year-on-year mobile 3G subscriber growth and noted that smartphone shipments have surpassed feature phone shipments in the U.S. and Europe. She also highlighted the explosive growth of iPhone, iPad, and (particularly) Android.

User Interface: Interface matters. "Before Steve Jobs, computers were utilitarian tools for computation," said Meeker. "After Steve, computers became beautiful objects we could use in thousands of ways to aim to make life better." In the wake of the iPhone and the iPad, there's a revolution in the way we interact with computers, through touch and voice, while mobile. "We think the next big things are the things on the sides of your head," said Meeker. "Those would be your ears." She was referring to the innovation seen in voice recognition, sound creation and sharing, and audio interfaces like headphones recently.

America Leads In Mobile Innovation: Despite the general economic doldrums in the U.S., American companies are leading the way toward the mobile era. Made-in-the-USA smartphone operating systems--Android, iOS, and Windows Mobile--have gone from 5% market share in 2005 to 65% today. "The pace of innovation in Silicon Valley may be unprecedented," said Meeker.

Mobile Devices Are Empowering People: Some 85% of people in the world have access to the wireless grid, more than have access to electricity. Over 200 million farmers in India receive payments via mobile devices. Meeker pointed out how instrumental such devices have been during disasters like the March earthquake and tsunami in Japan. "When people look back at this era that we're living in now, they'll say this was the time people got empowered by mobile devices," said Meeker.

The video of her talk is embedded below:



Couple of presentations from her are embedded below:





Tuesday, 18 October 2011

HD Voice - Next step in the evolution of voice communication

Nearly 2 years back I blogged about Orange launching HD Voice via the use of AMR-WB (wideband) codecs. HD voice is already fully developed and standardized technology and has so far been deployed on 32 networks in almost as many countries.

People who have experienced HD voice say it feels like they are talking to a person in the same room. Operators derive 70 percent of their revenue from voice and voice-related services, and studies show that subscribers appreciate the personal nature of voice communication, saying it offers a familiar and emotional connection to another person.

HD voice is also a reaction to the competition faced by the operators from OTT players like Skype.

Below is an embed from the recent whitepaper by Ericsson:



For more information also see:



Friday, 14 October 2011

Gartner Hype Cycle - Internet of Things


Click on the picture to enlarge

Interesting pic showing the Hype Cycle for different technologies. I picked it up from this interesting presentation on Internet Of Things here.

Monday, 10 October 2011

What is GELTE?

GSM, EDGE and LTE Interworking.
This presentation available to download from here.

Wednesday, 5 October 2011

Simultaneous Voice and LTE (SVLTE)


When LTE is an overlay to a CDMA/EV-DO network, the current de facto standard for voice delivery is Simultaneous Voice and LTE (SVLTE). In this arrangement, voice service is deployed as a 1x service running in parallel with LTE data services. For this solution to work, the handset needs to have two radios that are on simultaneously. The problem that is obvious is that the power consumption would generally be higher as two radios are on when the voice call is ongoing. The advantage (and I think its a big advantage) is that the data speeds are not affected by ongoing voice call and at the same time the state machine is simple.

For some reason this idea is not very popular for the 2G/3G evolution to LTE as the reliance will be on the CS Fallback. I had discussed this idea in the LTE World Summit and had blogged about it, you can read more details and comments here.

There is also a recent whitepaper from Huawei that covers these issues going towards VoLTE. Its available here.

Edit 06/10/11: Changed the acronym of SVLTE from 'Simultaneous Voice Over LTE' to 'Simultaneous Voice and LTE' as this is correct and referred to elsewhere.

Monday, 3 October 2011

LTE Survey from Telecom Asia and Maravedis

Click on the pic. to enlarge

Interesting survey results. As seen in Fig. 2 above if Video and P2P is the main drivers for LTE for some operators, soon they may end up in trouble as the users will consume as much as allowed and given opportunity. An interesting thing though is that the operators are thinking of a fallback strategy that includes Wifi, Femtocells and Picocells (Fig. 3). Finally (Fig. 4), interesting to see that operators believe in launching Smartphones for LTE, I guess CS Fallback is the only possible option for the time being (and maybe for some time to come).

You can read the complete report below:
If its too difficult to read the embed, go to Slideshare here and download presentation.