Parallel Wireless is Hiring

Showing posts with label M2M. Show all posts
Showing posts with label M2M. Show all posts

Monday, 1 May 2017

Variety of 3GPP IoT technologies and Market Status - May 2017

I have seen many people wondering if so many different types of IoT technologies are needed, 3GPP or otherwise. The story behind that is that for many years 3GPP did not focus too much on creating an IoT variant of the standards. Their hope was that users will make use of LTE Cat 1 for IoT and then later on they created LTE Cat 0 (see here and here).

The problem with this approach was that the market was ripe for a solution to a different types of IoT technologies that 3GPP could not satisfy. The table below is just an indication of the different types of technologies, but there are many others not listed in here.

The most popular IoT (or M2M) technology to date is the humble 2G GSM/GPRS. Couple of weeks back Vodafone announced that it has reached a milestone of 50 million IoT connections worldwide. They are also adding roughly 1 million new connections every month. The majority of these are GSM/GPRS.

Different operators have been assessing their strategy for IoT devices. Some operators have either switched off or are planning to switch off they 2G networks. Others have a long term plan for 2G networks and would rather switch off their 3G networks to refarm the spectrum to more efficient 4G. A small chunk of 2G on the other hand would be a good option for voice & existing IoT devices with small amount of data transfer.

In fact this is one of the reasons that in Release-13 GSM is being enhanced for IoT. This new version is known as Extended Coverage – GSM – Internet of Things (EC-GSM-IoT ). According to GSMA, "It is based on eGPRS and designed as a high capacity, long range, low energy and low complexity cellular system for IoT communications. The optimisations made in EC-GSM-IoT that need to be made to existing GSM networks can be made as a software upgrade, ensuring coverage and accelerated time to-market. Battery life of up to 10 years can be supported for a wide range use cases."

The most popular of the non-3GPP IoT technologies are Sigfox and LoRa. Both these technologies have gained significant ground and many backers in the market. This, along with the gap in the market and the need for low power IoT technologies that transfer just a little amount of data and has a long battery life motivated 3GPP to create new IoT technologies that were standardised as part of Rel-13 and are being further enhanced in Rel-14. A summary of these technologies can be seen below

If you look at the first picture on the top (modified from Qualcomm's original here), you will see that these different IoT technologies, 3GPP or otherwise address different needs. No wonder many operators are using the unlicensed LPWA IoT technologies as a starting point, hoping to complement them by 3GPP technologies when ready.

Finally, looks like there is a difference in understanding of standards between Ericsson and Huawei and as a result their implementation is incompatible. Hopefully this will be sorted out soon.

Market Status:

Telefonica has publicly said that Sigfox is the best way forward for the time being. No news about any 3GPP IoT technologies.

Orange has rolled out LoRa network but has said that when NB-IoT is ready, they will switch the customers on to that.

KPN deployed LoRa throughout the Netherlands thereby making it the first country across the world with complete coverage. Haven't ruled out NB-IoT when available.

SK Telecom completed nationwide LoRa IoT network deployment in South Korea last year. It sees LTE-M and LoRa as Its 'Two Main IoT Pillars'.

Deutsche Telekom has rolled out NarrowBand-IoT (NB-IoT) Network across eight countries in Europe (Germany, the Netherlands, Greece, Poland, Hungary, Austria, Slovakia, Croatia)

Vodafone is fully committed to NB-IoT. Their network is already operational in Spain and will be launching in Ireland and Netherlands later on this year.

Telecom Italia is in process of launching NB-IoT. Water meters in Turin are already sending their readings using NB-IoT.

China Telecom, in conjunction with Shenzhen Water and Huawei launched 'World's First' Commercial NB-IoT-based Smart Water Project on World Water Day.

SoftBank is deploying LTE-M (Cat-M1) and NB-IoT networks nationwide, powered by Ericsson.

Orange Belgium plans to roll-out nationwide NB-IoT & LTE-M IoT Networks in 2017

China Mobile is committed to 3GPP based IoT technologies. It has conducted outdoor trials of NB-IoT with Huawei and ZTE and is also trialing LTE-M with Ericsson and Qualcomm.

Verizon has launched Industry’s first LTE-M Nationwide IoT Network.

AT&T will be launching LTE-M network later on this year in US as well as Mexico.

Sprint said it plans to deploy LTE Cat 1 technology in support of the Internet of Things (IoT) across its network by the end of July.

Further reading:

Sunday, 5 February 2017

An Introduction to IoT: Connectivity & Case Studies

I did an introductory presentation on IoT yesterday at at the University of Northampton, Internet of Things event. Below if my presentation in full. Can be downloaded from slideshare.

xoxoxoxoxoxo Added 18/02/2017 oxoxoxoxoxoxox

Below is video of the presentation above and post presentation interview:

Saturday, 29 October 2016

M2M vs IoT

This post is for mainly for my engineering colleagues. Over the years I have had many discussions to explain the difference between Machine-to-Machine (M2M) or Machine Type Communication (MTC) as 3GPP refers to them and the Internet of Things (IoT). Even after explaining the differences, I am often told that this is not correct. Hence I am putting this out here. Please feel free to express your views in the comments section.

Lets take an example of an office with 3 floors. Lets assume that each floor has a coffee machine like the one in this picture or something similar. Lets assume different scenarios:

Scenario 1: No connectivity
In this case a facilities person has to manually go to each of the floor and check if there are enough coffee beans, chocolate powder, milk powder, etc. He/She may have to do this say 3-4 times a day.

Scenario 2: Basic connectivity (M2M)
Lets say the coffee machine has basic sensors so it can send some kind of notification (on your phone or email or message, etc.) whenever the coffee beans, chocolate powder, milk powder, etc., falls below a certain level. In some cases you may also be able to check the levels using some kind of a app on your phone or computer. This is an example of M2M

Scenario 3: Advanced connectivity (IoT)
Lets say that the coffee machine is connected to the office system and database. It knows which employees come when and what is their coffee/drinks consumption pattern. This way the machine can optimize when it needs to be topped up. If there is a large meeting/event going on, the coffee machine can even check before the breaks and indicate in advance that it needs topping up with beans/chocolate/milk/etc.

Scenario 4: Intelligent Devices (Advanced IoT)
If we take the coffee machine from scenario 3 and add intelligence to it, it can even know about the inventory. How much of coffee beans, chocolate powder, milk powder, etc is in stock and when would they need ordering again. It can have an employee UI (User Interface) that can be used by employees to give feedback on which coffee beans are more/less popular or what drinks are popular. This info can be used by the machines to order the supplies, taking into account the price, availability, etc.

In many cases, API's would be available for people to build services on top of the basic available services to make life easier. Someone for example can build a service that if a cup is already at the dispenser and has been there for at least 2 minutes (so you know its not being used by someone else) then the person can choose/order their favourite drink from their seat so he/she doesn't have to wait for 30 seconds at the machine.

If you think about this further you will notice that in this scenario the only requirement for the human is to clean the coffee machine, top it up, etc. In future these can be automated with robots carrying out these kinds of jobs. There would be no need for humans to do these menial tasks.

I really like this slide from InterDigital as it captures the difference between M2M and IoT very well, especially in the light of the discussion above.

With the current M2M, we have:

  • Connectivity: connection for machines;
  • Content: massive raw data from things;

IoT is Communication to/from things which offer new services via cloud / context / collaboration / cognition technologies.

With evolution to IoT, we have:
  • Cloud: cloud service and XaaS (Everything as a Service) for IoT;
  • Context: context-aware design;
  • Collaboration: collaborative services;
  • Cognition: semantics and autonomous system adjustment
Let me know if you agree. 

Sunday, 16 October 2016

Inside 3GPP Release-13 - Whitepaper by 5G Americas

The following is from the 5G Americas press release:

The summary offers insight to the future of wireless broadband and how new requirements and technological goals will be achieved. The report updates Release 13 (Rel-13) features that are now completed at 3GPP and were not available at the time of the publication of a detailed 5G Americas report, Mobile Broadband Evolution Towards 5G: 3GPP Release 12 & Release 13 and Beyond in June 2015.
The 3GPP standards have many innovations remaining for LTE to create a foundation for 5G.  Rel-12, which was finalized in December 2014, contains a vast array of features for both LTE and HSPA+ that bring greater efficiency for networks and devices, as well as enable new applications and services. Many of the Rel-12 features were extended into Rel-13.  Rel-13, functionally frozen in December 2015 and completed in March 2016, continues to build on these technical capabilities while adding many robust new features.
Jim Seymour, Principal Engineer, Mobility CTO Group, Cisco and co-leader of the 5G Americas report explained, “3GPP Release 13 is just a peek behind the curtain for the unveiling of future innovations for LTE that will parallel the technical work at 3GPP on 5G. Both LTE and 5G will work together to form our connected future.”
The numerous features in the Rel-13 standards include the following for LTE-Advanced:
  • Active Antenna Systems (AAS), including beamforming, Multi-Input Multi-Output (MIMO) and Self-Organizing Network (SON) aspects
  • Enhanced signaling to support inter-site Coordinated Multi-Point Transmission and Reception (CoMP)
  • Carrier Aggregation (CA) enhancements to support up to 32 component carriers
  • Dual Connectivity (DC) enhancements to better support multi-vendor deployments with improved traffic steering
  • Improvements in Radio Access Network (RAN) sharing
  • Enhancements to Machine Type Communication (MTC)
  • Enhanced Proximity Services (ProSe)
Some of the standards work in Rel-13 related to spectrum efficiency include:                                                                                                                       
  • Licensed Assisted Access for LTE (LAA) in which LTE can be deployed in unlicensed spectrum
  • LTE Wireless Local Area Network (WLAN) Aggregation (LWA) where Wi-Fi can now be supported by a radio bearer and aggregated with an LTE radio bearer
  • Narrowband IoT (NB-IoT) where lower power wider coverage LTE carriers have been designed to support IoT applications
  • Downlink (DL) Multi-User Superposition Transmission (MUST) which is a new concept for transmitting more than one data layer to multiple users without time, frequency or spatial separation
“The vision for 5G is being clarified in each step of the 3GPP standards. To understand those steps, 5G Americas provides reports on the developments in this succinct, understandable format,” said Vicki Livingston, Head of Communications for the association.

The whitepaper as follows:

Related posts:

Wednesday, 18 November 2015

Cellular IoT (CIoT) or LoRa?

Back in September, 3GPP reached a decision to standardise NarrowBand IOT (NB-IOT). Now people familiar with the evolution of LTE-A UE categories may be a bit surprised with this. Upto Release-11, the lowest data rate device was UE Cat-1, which could do 10Mbps in DL and 5Mbps in UL. This was power hungry and not really that useful for low data rate sensor devices. Then we got Cat-0 as part of Release-12 which simplified the design and have 1Mbps in DL & UL.

Things start to become a bit complex in Release-13. The above picture from Qualcomm explains the evolution and use cases very well. However, to put more details to the above picture, here is some details from the 4G Americas whitepaper (embedded below)

In support of IoT, 3GPP has been working on all several related solutions and generating an abundance of LTE-based and GSM-based proposals. As a consequence, 3GPP has been developing three different cellular IoT standard- solutions in Release-13:
  • LTE-M, based on LTE evolution
  • EC-GSM, a narrowband solution based on GSM evolution, and
  • NB-LTE, a narrowband cellular IoT solution, also known as Clean Slate technologies
However, in October 2015, the 3GPP RAN body mutually agreed to study the combination of the two different narrowband IoT technical solutions, EC-GSM and NB-LTE, for standardization as a single NB-IoT technology until the December 2015 timeframe. This is in consideration of the need to support different operation modes and avoid divided industry support for two different technical solutions. It has been agreed that NB-IoT would support three modes of operation as follows:
  • ‘Stand-alone operation’ utilizing, for example, the spectrum currently being used by GERAN systems as a replacement of one or more GSM carriers,
  • ‘Guard band operation’ utilizing the unused resource blocks within a LTE carrier’s guard-band, and
  • ‘In-band operation’ utilizing resource blocks within a normal LTE carrier.

Following is a brief description of the various standard solutions being developed at 3GPP by October 2015:

LTE-M: 3GPP RAN is developing LTE-Machine-to-Machine (LTE-M) specifications for supporting LTE-based low cost CIoT in Rel-12 (Low-Cost MTC) with further enhancements planned for Rel-13 (LTE eMTC). LTE-M supports data rates of up to 1 Mbps with lower device cost and power consumption and enhanced coverage and capacity on the existing LTE carrier.

EC-GSM: In the 3GPP GERAN #62 study item “Cellular System Support for Ultra Low Complexity and Low Throughput Internet of Things”, narrowband (200 kHz) CIoT solutions for migration of existing GSM carriers sought to enhance coverage by 20 dB compared to legacy GPRS, and achieve a ten year battery life for devices that were also cost efficient. Performance objectives included improved indoor coverage, support for massive numbers of low-throughput devices, reduced device complexity, improved power efficiency and latency. Extended Coverage GSM (EC-GSM) was fully compliant with all five performance objectives according to the August 2015 TSG GERAN #67 meeting report. GERAN will continue with EC-GSM as a work item within GERAN with the expectation that standards will be frozen by March 2016. This solution necessarily requires a GSM network.

NB-LTE: In August 2015, work began in 3GPP RAN Rel-13 on a new narrowband radio access solution also termed as Clean Slate CIoT. The Clean Slate approach covers the Narrowband Cellular IoT (NB-CIoT), which was the only one of six proposed Clean Slate technologies compliant against a set of performance objectives (as noted previously) in the TSG GERAN #67 meeting report and will be part of Rel-13 to be frozen in March 2016. Also contending in the standards is Narrowband LTE Evolution (NB-LTE) which has the advantage of easy deployment across existing LTE networks.

Rel-12 introduces important improvements for M2M like lower device cost and longer battery life. Further improvements for M2M are envisioned in Rel-13 such as enhanced coverage, lower device cost and longer battery life. The narrowband CIoT solutions also aim to provide lower cost and device power consumption and better coverage; however, they will also have reduced data rates. NB CleanSlate CIoT is expected to support data rates of 160bps with extended coverage.

Table 7.1 provides some comparison of the three options to be standardized, as well as the 5G option, and shows when each release is expected to be finalized.

Another IoT technology that has been giving the cellular IoT industry run for money is the LoRa alliance. I blogged about LoRa in May and it has been a very popular post. A extract from a recent article from Rethink Research as follows:

In the past few weeks, the announcements have been ramping up. Semtech (the creator of the LoRa protocol itself, and the key IP owner) has been most active, announcing that The Lace Company, a wireless operator, has deployed LoRa network architecture in over a dozen Russian cities, claiming to cover 30m people over 9,000km2. Lace is currently aiming at building out Russian coverage, but will be able to communicate to other LoRa devices over the LoRa cloud, as the messages are managed on cloud servers once they have been transmitted from end-device to base unit via LoRaWAN.

“Our network allows the user to connect to an unlimited number of smart sensors,” said Igor Shirokov, CEO of Lace Ltd. “We are providing connectivity to any device that supports the open LoRaWAN standard. Any third party company can create new businesses and services in IoT and M2M market based on our network and the LoRaWAN protocol.”

Elsewhere, Saudi Arabian telco Du has launched a test LoRa network in Dubai, as part of a smart city test project. “This is a defining moment in the UAE’s smart city transformation,” said Carlos Domingo, senior executive officer at Du. “We need a new breed of sensor friendly network to establish the smart city ecosystem. Thanks to Du, this capability now exists in the UAE Today we’ve shown how our network capabilities and digital know-how can deliver the smart city ecosystem Dubai needs. We will not stop in Dubai; our deployment will continue country-wide throughout the UAE.”

But the biggest recent LoRa news is that Orange has committed itself to a national French network rollout, following an investment in key LoRa player Actility. Orange has previously trialed a LoRa network in Grenoble, and has said that it opted for LoRa over Sigfox thanks to its more open ecosystem – although it’s worth clarifying here that Semtech still gets a royalty on every LoRa chip that’s made, and will continue to do so until it chooses not to or instead donates the IP to the non-profit LoRa Alliance itself.

It would be interesting to see if this LoRa vs CIoT ends up the same way as WiMAX vs LTE or not.

Embedded below is the 4G Americas whitepaper as well as a LoRa presentation from Semtech:

Further reading:

Tuesday, 4 August 2015

The Importance of License Exempt Frequency Bands

Some of you may be aware that I am also a Technical Programme Manager with the UK Spectrum Policy Forum. Recently we published a whitepaper that we had commissioned to Plum consulting on "Future use of Licence Exempt Radio Spectrum". It is an interested read not only for spectrum experts but also for people trying to understand the complex world of spectrum.

The report is very well written. Here are a few extracts in purple:

Licence exempt frequency bands are those that can be used by certain applications without the need for prior authorisation or an individual right of use. This does not mean that they are not subject to regulation – use must still comply with pre-defined technical rules to minimise the risk of interference. Most licence exempt bands are harmonised throughout Europe and are shared with other services or applications, such as radars or industrial, scientific and medical (ISM) equipment. Wi-Fi and Bluetooth are probably the most familiar examples of mass-market licence exempt wireless applications, but the bands support many other consumer devices, such as cordless phones, doorbells, car key fobs, central heating controllers, baby monitors and intruder alarms. Looking to the future, licence exempt bands are likely to be a key enabler of wireless machine to machine (M2M) communication applications.

Key benefits of licence exempt bands include:
  • For end-users:
    • Greater convenience and flexibility by avoiding the need for lengthy runs of cable in home and work environments
    • Ability to connect mobile devices to a fixed broadband network, reducing dependence on the mobile network and potentially saving costs both for the service provider and the end-user
    • Enhanced convenience, safety and security, e.g. through installation of low cost wireless alarm systems or ability to unlock vehicles remotely rather than fumbling with keys
  • For equipment vendors and operators:
    • Facilitating market entry – there is no need to acquire a licence to deploy a service
    • Enabling niche applications or services to be addressed quickly and cheaply using existing technology and spectrum – this has been particularly effective in serving new machine to machine (M2M) applications in areas such as health, transport and home automation.
    • Providing certainty about spectrum access – there is no need to compete or pay for spectrum access (though the collective nature of spectrum use means quality of service cannot be guaranteed)
    • The ability to extend the reach of fixed communication networks, by providing wireless local area connectivity in homes, businesses and at public traffic hotspots.
The two most notable drawbacks are the inability to guarantee quality of service and the more limited geographic range that is typically available (reflecting the lower power limits that apply to these bands). Licence exempt wireless applications cannot claim protection from interference arising from other users or radio services. They operate in shared frequency bands and must not themselves cause harmful interference to other radio services.

From a regulator’s perspective, licence exempt bands can be more problematic than licensed bands in terms of refarming spectrum, since it is difficult to prevent the continued deployment of legacy equipment in the bands or to monitor effectively their utilisation. There is also generally no control over numbers and / or location of devices, which can make sharing difficult and limits the amount of spectrum that can be used in this way.

In Europe, regulation of licence exempt bands is primarily dealt with at an international level by European institutions. Most bands are fully harmonised, whereby free circulation of devices that comply with the relevant standards is effectively mandated throughout the EU. However some bands are subject to “soft” harmonisation, where the frequency limits and technical characteristics are harmonised but adoption of the band is left to national administrations to decide.

A key recommendation, which I think would be very interesting and useful would be: Promote further international harmonisation of licence exempt bands, in particular the recently identified 870 – 876 MHz and 915 – 921 MHz band that are likely to be critical for supporting future M2M demand growth in Europe.

Note that a similar sub-1GHz band has been recommended for 5G for M2M/IoT. The advantage for low frequencies is that the coverage area is very large, suitable for devices with low date rates. Depending on how the final 5G would be positioned, it may well use the license exempt bands, similar to the LAA/LTE-U kind of approach maybe.

The whitepaper is embedded below and is available to download from here:

Sunday, 28 June 2015

LTE-M a.k.a. Rel-13 Cellular IoT

Some months back I wrote about the LTE Category-0 devices here. While Rel-12 LTE Cat 0 devices are a first step in the right direction, they are not enough for small sensor type of devices where long battery life is extremely important. As can be seen in the picture above, this will represent a huge market in 2025.

To cater for this requirement of extremely long battery life, it is proposed that Rel-13 does certain modifications for these low throughput sensor type devices. The main modification would be that the devices will work in 1.4MHz bandwidth only, regardless of the bandwidth of the cell. The UE transmit power will be max of 20dB and the throughput would be further reduced to a maximum of 200kbps.

The presentation, from Cambridge Wireless Future of Wireless International Conference is embedded below:

See also:

Sunday, 7 June 2015

Nuggets from Ericsson Mobility Report

Ericsson mobility report 2015 was released last week. Its interesting to see quite a few of these stats on devices, traffic, usage, etc. is getting released around this time. All of these reports are full of useful information and in the old days when I used to work as an analyst, I would spend hours trying to dig into them to find gold. Anyway, some interesting things as follows and report at the end.

The above chart, as expected, data will keep growing but voice will get flatter and maybe go down, if people start moving to VoIP

Application volume shares, based on the data plan. This is interesting. If you are a heavy user, you may be watching a lot of videos and if you are a light user then you are watching just a few of them.

How about device sizes, does our behaviour change based on the screen size?

What about the 50 Billion connected devices, was it too much? Is the real figure more like 28 billion?

Anyway, the report is embedded below.

Sunday, 10 May 2015

LTE-Broadcast making a push while Terrestrial broadcast still popular as ever

"TV isn't dying, it's having babies." This quote made my day. I have argued a few times in the past that terrestrial broadcasting will continue working and will be probably the most popular approach for a long time to come. The way things work with it may change. Multi-screen is one possible approach but you may have more interactions like 'red button functionality', etc.
Anyway, in Europe 800MHz spectrum has been cleared for use by Mobile Broadband technologies (LTE mainly). 700MHz is planned to be cleared as well by 2020, as per the suggestion in Lamy report. The other UHF band from 470MHz to 694MHz would be left as it is until 2030, with a review planned in 2025.

This has forced even big players like BBC to start looking at other mechanisms to deliver TV. While BBC3 was moved to online only, BBC is also exploring how to use LTE-Multicast to deliver content. It has been working to have its very popular iPlayer work with eMBMS.

Embedded below is a presentation from Cambridge Wireless CWTEC 2015 conference.

eMBMS is gaining popularity with its presence in lot more chipsets and even more trials. GSA report has shown that there are quite a few trials going on worldwide but the question remains about the business models. Most operators would not like to become content providers and compete with the incumbents in their markets. Having someone like BBC in the UK is helpful but not sure how many such options are available worldwide. Embedded below is the GSA presentation

There were some nice pictures from MWC as can be seen above. Ericsson has a video as well (below) on how the app works.

D-Link is also working on M2M modules that could be used in billboards to dynamically update the ads at very regular intervals. There is a video here that explains this further.

Finally here is a Video from Visteon/Verizon that explains how LTE-Multicast can be used to deliver software updates in the connected car:

Finally, here are couple of presentations that may interest you too:

Saturday, 28 March 2015

Report on Spectrum Usage and Demand in the UK

Last week at work, we released a report titled "UK Spectrum Usage & Demand". The only time most people hear about spectrum is when there are some auctions going on. Often a small chunk of spectrum gets sold off for billion(s) of dollars/pounds and these surely make a headline. As I recently found out, 50% of spectrum in UK is shared and 25% is license exempt.

Anyway, this first edition of the report focuses on Public Mobile, Utilities, Business Radio and Space/Satellites. Space is becoming an important area of focus here as it is a significant contributor to the UK economy.

Anyway, the report is embedded below and is available to download from here:

Sunday, 8 March 2015

LTE Category-0 low power M2M devices

While we have talked about different LTE categories, especially higher speeds, we have not yet discussed Category-0 or Cat-0 for M2M.

A recent news report stated the following:

CAT-1 and CAT-0 are lower speed and power versions of the LTE standard which dramatically extend the addressable market for carriers and chip makers alike. They introduce new IoT targeted features, extend battery operation and lower the cost of adding LTE connectivity.
“While chipsets supporting these lower categories are essential for numerous applications, including wearable devices, smart home and smart metering, there has been an industry development gap that we had anticipated two years ago,” said Eran Eshed, co-founder and vice president of marketing and business development at Altair. “We’ve worked hard to address this gap by being first to market with true CAT-1 and 0 chipsets featuring a power/size/cost combination that is a massive game-changer.”
Ericsson has an interesting presentation that talks about LTE evolution for cellular IoT. While Rel-12 Cat-0 would use the normal allocated bandwidth (upto 20MHz), Rel-13 plans further enhancements to save even more power by reducing the bandwidth to 1.4Mhz. Another possible saving of power comes from the use of Half Duplex (but its optional). There is a very interesting presentation from Mstar semiconductors on half duplex that I have blogged about here. Anyway, the presentation from Ericsson is here:

When we talk about 50 billion M2M devices, a question that I regularly ask is how many of them will be using cellular and how many will use other technologies. Its good to see that my skepticism is shared by others as well, see the tweet below.

Click on the to see the actual media.

Nokia has also got an interesting whitepaper on this topic which talks about optimizing LTE and the architectural evolution that will lead cellular LTE to become a compelling technology so that it can be widely adopted. That paper is embedded as well below.

Tuesday, 23 December 2014

M2M embedded UICC (eSIM) Architecture and Use Cases

Machine-to-Machine UICC, also known as M2M Form Factor (MFF) and is often referred to as embedded SIM (eSIM) is a necessity for the low data rate M2M devices that are generally small, single contained unit that is also sealed. The intention is that once this M2M device is deployed, then there is no need to remove the UICC from it. There may be a necessity to change the operator for some or the other reason. This gives rise to the need of multi-operator UICC (SIM) cards.

The GSMA has Embedded SIM specifications available for anyone interested in implementing this. There are various documents available on the GSMA page for those interested in this topic further.

While the complete article is embedded below, here is an extract of the basic working from the document:

A eUICC is a SIM card with a Remote Provisioning function, and is designed not to be removed or changed. It is able to store multiple communication profiles, one of which is enabled (recognized by the device and used for communication). The network of the MNO in the enabled profile is used for communication. Profiles other than the enabled profile are disabled (not recognized by the device). With conventional SIM cards, the ICCID is used as the unique key to identify the SIM card, but with eUICC, the ICCID is the key used to identify profiles, and a new ID is defined, called the eUICCID, which is used as the unique key for the eSIM

GSMA defines two main types of profile.
1) Provisioning Profile: This is the communication profile initially stored in the eUICC when it is shipped. It is a limited-application communication profile used only for downloading and switching Operational Profiles, described next.
2) Operational Profile: This is a communication profile for connecting to enterprise servers or the Internet. It can also perform the roles provided by a Provisioning profile

An eSIM does not perform profile switching as a simple IC card function, but rather switches profiles based on instructions from equipment called a Subscription Manager. A Subscription Manager is maintained and managed by an MNO. The overall eSIM architecture, centering on the Subscription Manager, is shown in Figure 3, using the example of switching profiles within the eUICC.

An eUICC must have at least one profile stored in it to enable OTA functionality, and one of the stored profiles must be enabled. The enabled profile uses the network of MNO A for communication. When the user switches profiles, a switch instruction is sent to the Subscription Manager. At that time, if the profile to switch to is not stored in the eUICC, the profile is first downloaded. When it receives a switch instruction, the eUICC performs a switch of the enabled profile as an internal process.

After the switch is completed, it uses the network of MNO B to send notification that the switch has completed to the Subscription Manager, completing the process. The same procedure is used to switch back to the original MNO A, or to some other MNO C.

Anyway, here is the complete paper:

Thursday, 10 July 2014

Taking 5G from vision to reality

This presentation by Moray Rumney of Agilent (Keysight) in Cambridge Wireless, Future of Wireless International conference takes a different angle at what the targets for different technologies have been and based on that what should be the targets for 5G. In fact he has an opinion on M2M and Public safety as well and tries to combine it with 5G. Unfortunately I wasnt at this presentation but from having heard Moray speak in past, I am sure it was a thought provoking presentation.

All presentations from the Future of Wireless International Conference (FWIC) are available here.

Saturday, 25 January 2014

Security and other development on the Embedded SIM

Its no surprise that GSMA has started working on Embedded SIM specifications. With M2M getting more popular every day, it would make sense to have the SIM (or UICC) embedded in them during the manufacturing process. The GSMA website states:

The GSMA’s Embedded SIM delivers a technical specification to enable the remote provisioning and management of Embedded SIMs to allow the “over the air” provisioning of an initial operator subscription and the subsequent change of subscription from one operator to another.
The Embedded SIM is a vital enabler for Machine to Machine (M2M) connections including the simple and seamless mobile connection of all types of connected vehicles. In the M2M market the SIM may not easily be changed via physical access to the device or may be used in an environment that requires a soldered connection, thus there is a need for ‘over the air’ provisioning of the SIM with the same level of security as achieved today with traditional “pluggable” SIM. It is not the intention for the Embedded SIM to replace the removable SIM currently used as the removable SIM still offers many benefits to users and operators in a number of different ways – for example, the familiarity of the form factor, easy of portability, an established ecosystem and proven security model.

The last time I talked about embedded SIM was couple of years back, after the ETSI security workshop here. Well, there was another of these workshops recently and an update to these information.

The ETSI presentation is not embedded here but is available on Slideshare here. As the slide says:

An embedded UICC is a “UICC which is not easily accessible or replaceable, is not intended to be removed or replaced in the terminal, and enables the secure changing of subscriptions” (ETSI TS 103 383)

Finally, Embedded SIM should not be confused with Soft-SIM. My last post on Soft-SIM, some couple of years back here, has over 15K views which shows how much interest is there in the soft SIM. As the slide says:

Soft or Virtual SIM is a completely different concept that does not use existing SIM hardware form factors and it raises a number of strong security issues:

  • Soft SIM would store the Operator secret credentials in software within the Mobile device operating system - the same system that is often attacked to modify the handset IMEI, perform SIM-Lock hacking and ‘jail-break’ mobile OS’s
  • Operators are very concerned about the reduction in security of their credentials through the use of Soft SIM. Any SIM approach not based on a certified hardware secure element will be subject to continual attack by the hacking community and if compromised result in a serious loss of customer confidence in the security of Operator systems
  • Multiple Soft SIM platforms carrying credentials in differing physical platforms, all requiring security certification and accreditation would become an unmanageable overhead – both in terms of resource, and proving their security in a non-standardised virtual environment

The complete GSMA presentation is as follows:

You may also like my old paper:

Thursday, 16 January 2014

3GPP Rel-12 and Future Security Work

Here is the 3GPP presentation from the 9th ETSI Security workshop. Quite a few bits on IMS and IMS Services and also good to see new Authentication algorithm TUAK as an alternative to the widely used Milenage algorithm.

Friday, 13 December 2013

Advancements in Congestion control technology for M2M

NTT Docomo recently published a new article (embedded below) on congestion control approaches for M2M. In their own words:

Since 3GPP Release 10 (Rel. 10) in 2010, there has been active study of technical specifications to develop M2M communications further, and NTT DOCOMO has been contributing proactively to creating these technical specifications. In this article, we describe two of the most significant functions standardized between 3GPP Rel. 10 and Rel. 11: the M2M Core network communications infrastructure, which enables M2M service operators to introduce solutions more easily, and congestion handling technologies, which improve reliability on networks accommodating a large number of terminals.

Complete article as follows:

Other related posts:

Monday, 9 December 2013

Rise of the "Thing"

Light Reading carried an interesting cartoon on how M2M works. I wouldnt be surprised if some of the M2M applications at present do work like this. Jokes apart, last week the UK operator EE did a very interesting presentation on Scaling the network for the Rise of the Thing.

A question often asked is "What is the difference between the 'Internet of Things' (IoT) and 'Machine to Machine' (M2M)?". This can generate big discussions and can be a lecture on its own. Quora has a discussion on the same topic here. The picture above from the EE presentation is a good way of showing that M2M is a subset of IoT. 

Its also interesting to note how these 'things' will affect the signalling. I often come across people who tell me that since most M2M devices just use small amounts of data transfer, why is there a need to move from GPRS to LTE. The 2G and 3G networks were designed primarily for Voice with Data secondary function. These networks may work well now but what happens when the predicted 50 Billion connected devices are here by 2020 (or 500 Billion by 2030). The current networks would drown in the control signalling that would often result in congested networks. Congestion control is just one of the things 3GPP is working on for M2M type devices as blogged earlier here. In fact the Qualcomm presentation blogged about before does a decent job of comparing various technologies for IoT, see here.

The EE presentation is embedded as follows:

Another good example website I was recently made aware of is - worth checking how IoT would help us in the future.

Friday, 13 September 2013

LTE for Utilities and Smart Grids

This has been an area of interest for the last couple of years. Discussions have been centred around, "Is LTE fit for IoT?", "Which technology for IoT", "Is it economical to use LTE for M2M?", "Would small cells be useful for M2M?", etc.

Ericsson has recently published a whitepaper titled "LTE for utilities - supporting smart grids". One of the table that caught my eye is as follows:

LTE would be ideally suited for some of the "Performance class" requirements where the transfer time requirements is less than 100ms. Again, it can always be debated if in many cases WiFi will meet the requirements so should WiFi be used instead of LTE, etc. I will let you form your own conclusions and if you are very passionate and have an opinion, feel free to leave comment.

The whitepaper is embedded below:

Related posts:

Friday, 23 August 2013

How Cyber-Attacks Can Impact M2M Infrastructure

An Interesting presentation from Deutsche Telekom in the Network Security Conference which highlights some of the issues faced by the M2M infrastructure. With 500 Billion devices being predicted, security will have to be stepped up for the M2M infrastructures to work as expected. Complete presentation embedded below: