Showing posts with label MIMO. Show all posts
Showing posts with label MIMO. Show all posts

Monday 23 November 2020

Radio Design Webinar: Optimising Your 700 MHz Deployments

 


Radio Design, the award-winning market leader in the provision of wireless infrastructure sharing solutions and RF filter systems, hosted a webinar last week focused on the deployment of the 700 MHz frequency band. This new 700 MHz spectrum is in great demand across the world, mainly due to its long anticipated use as low band 5G spectrum. The webinar explores the potential of this band, as well as how to prepare for potential challenges when deploying.

For people who are familiar with our trainings, we divide the spectrum into three layers, the coverage layer, the capacity layer and the high-throughput layer. 700 MHz is the most popular coverage layer spectrum worldwide.

The slide above from the webinar talks of the recent Austrian 5G Spectrum auction that we blogged about. See tweet below for details

In the webinar, slides and video embedded below, Radio Design’s founder – Eric Hawthorn – kicks things off by analysing the benefits of deploying the 700 MHz band in the real world, before passing over to Global Engineering Director – Steve Shaw – who explores some of the technical problems which can arise, as well as some of the solutions. Last but not least, COO and co-owner of Keima – Iris Barcia – provides her insight into the benefits of deploying the 700 MHz band.

Related Posts:

Tuesday 19 November 2019

Cell-free Massive MIMO and Radio Stripes


I wrote about "Distributed Massive MIMO using Ericsson Radio Stripes" after MWC 2019 here. I found it a very interesting concept and it will certainly take a few years before it becomes a reality.

Emil Björnson, Associate Professor at Linköping University have produced couple of videos on this topic. I am embedding both of them below for anyone who may be interested.

"A New Look at Cell-Free Massive MIMO" - based on technical paper from PIMRC 2019 on how to design Cell-free Massive MIMO systems that are both scalable and achieve high performance.



Worth noting the following about this video (based on video comments):
  • There are some minor issues with the sudio
  • Cell-free Massive MIMO is particularly for stadiums, streets, and places with many users or where it is hard to provide sufficient network quality with other methods.
  • This concept is still 4-5 years away from being ready to be practically deployed. It should be ready for later part of 5G, probably 5.5G

"Reinventing the Wireless Network Architecture Towards 6G: Cell-free Massive MIMO and Radio Stripes" looks at the motivation behind Cell-free Massive MIMO and how it can be implemented in 6G using radio stripes.



Worth noting the following on this video (based on video comments):

  • It may be possible that multiple frequency bands can be handled in the same radio stripe. If it is found to be possible then every other antenna  processing unit could manage a different band.
  • In principle, you can make the stripe as long as you need. But you probably need to divide it into segments since the power is supplied from one end of a stripe and it will only reach a limited distance (roughly up to 1 km). There are many implementation ideas and it remains to be seen what works out well in practice.

I am looking forward to see it work as it can solve coverage issues in many tricky scenarios.

Related Posts:

Tuesday 15 October 2019

Summary of #CWTEC 2019 Conference: 5G, Satellites & Magic MIMO

I was involved in helping organise yet another CW TEC conference this year. The topic was quite interesting and we had some brilliant speakers. Some of the excellent presentations were shared too, links below. Here is a very quick summary of the event, linking also to couple of excellent summaries below.

The topic was a bit unusual and it rhymed very well with the attendees which were from many different backgrounds, from 5G, communications, satellites, electronics, T&M companies, etc. Here is the opening video that will show you the motivations behind this



The day started with a breakfast briefing from Cambridge Consultants that looked at how Massive MIMO is the key to unlocking 5G User Experiences. Presentations available here.


Session 1 was titled "What has Massive MIMO ever done for us?". The narrative for the session was as follows:
Clearly the desire for more and more capacity in cellular networks has driven the industry to find more and more novel techniques. The work done over the years and boosted by Tom Marzetta’s article titled “Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas” has set high expectations for this emergent technology, so much so the term Magic MIMO has been coined. However, how significant is it into today’s early 5G rollout and what can we expect over the coming years? Are there still further enhancements we should expect to see?

There were 3 talks as follows:
  • Sync Architectures for 5G NR by Chris Farrow, Technical Manager, Chronos Technology (slides)
  • Three UK’s RAN transformation: Spectrum, RAN architecture strategy, Why? by Dr Erol Hepsaydir, Head of RAN and Devices Strategy and Architecture, Three UK (slides)
  • Active antenna systems in RAN: performance, challenges and evolution by Anvar Tukmanov, Wireless Research Manager, BT (slides)


Session 2 looked at "Non-Terrestrial & Hybrid Networks". The narrative for the session was as follows:
There are different initiatives underway to make satellite and other non-terrestrial networks as part of 5G. In addition, many different mobile operators have demonstrated compelling use-cases with drones, balloons and other aerostats. Other innovative approaches like European Aviation Network uses a hybrid-network using terrestrial network supported by a satellite connection as a backhaul for in-flight Wi-Fi. In addition to latency, what other challenges are stopping mass adoption of Non-terrestrial and Hybrid networks? What about advanced features like slicing, etc.?

There were 3 talks as follows:

  • Opportunities for blending terrestrial and satellite technologies by Dr Jaime Reed, Director, Consulting, Space, Defence and Intelligence, CGI (slides)
  • Non-terrestrial Networks: Standardization in 5G NR by Dr Yinan Qi, Senior 5G Researcher, Samsung R&D Institute UK (slides)
  • Satellites and 5G: A satellite operator’s perspective by Simon Watts, Principal Consultant, Avanti Communications (slides)


Session 3 looked at "5G: A Catalyst for Network Transformation". The narrative was as follows:
5G has set high expectations in the user as well as operator community. While eMBB can be supported with an upgrade of existing 4G infrastructure, URLLC and mMTC may require massive change in the network architecture. Operators have already started the transformation process with backhaul upgrades, new data centers, distributed core and cloud rollouts, etc. How are networks evolving to accommodate these deep changes? What other changes will be required in the network to support the growth until the next new generation arrives?
This session featured 3 talks as well
  • An Introduction to Open RAN Concept by Zahid Ghadialy, Senior Director, Strategic Marketing, Parallel Wireless UK & EMEA (slides)
  • Powering the successful deployment of 5G infrastructure by David George, Vice President of EMEA and APAC, Sitetracker (slides)
  • The 5G transformation: no sweet without sweat by Antonella Faniuolo, Head of Network Strategy, Planning, Digital & Optimisation, Vodafone (slides)


The final session topic was "Getting ready for Beyond-5G Era". The narrative was as follows:
Many technologies like Full duplex, etc. that were originally intended to be part of 5G were not able to make it into the standards. Along with these, what other revolutionary changes are needed to make Beyond-5G technologies not only fulfil the vision, ambition and use-cases that were originally envisaged for 5G but to take it a step further and make it a game changer.
This session featured 3 talks as well, as follows:
  • Thinking Beyond 5G: Projects and Initiatives by Alan Carlton, Vice President, InterDigital Europe (slides not available)
  • 5G Evolution: Progressive enhancement and new features for new markets by Matthew Baker, Head of Radio Physical Layer and Coexistence Standardization, Nokia (slides)
  • Why 6G’s design goals need far more than just radio & core innovation by Dean Bubley, Analyst & Futurist, Disruptive Analysis (slides not available)
And my personal highlight was that I launched World's first coloured 5G tie


Hopefully you found the presentations shared as useful. Please also read the summaries of CWTEC provided below.


Related Articles:

Tuesday 9 April 2019

Distributed Massive MIMO using Ericsson Radio Stripes


One of the interesting things that caught my attention in MWC 2019 was the Ericsson Radio Stripes.

Emil Björnson explains it nicely in his blog as to how this works.

Distributed MIMO deployments combine the best of two worlds: The beamforming gain and spatial interference suppression capability of conventional Massive MIMO with co-located arrays, and the bigger chance of being physically close to a service antenna that small cells offer. Coherent transmission and reception from a distributed MIMO array is not a new concept but has been given many names over the years, including Distributed Antenna System and Network MIMO. Most recently, in the beyond-5G era, it has been called ubiquitous Cell-free Massive MIMO communications and been refined based on insights and methodology developed through the research into conventional Massive MIMO.

One of the showstoppers for distributed MIMO has always been the high cost of deploying a large number of distributed antennas. Since the antennas need to be phase-synchronized and have access to the same data, a lot of high-capacity cables need to be deployed, particularly if a star topology is used. 
...

For those who cannot attend MWC, further conceptual details can be found in a recent overview paper on Cell-free Massive MIMO. An even more detailed description of radio stripes can be found in Ericsson’s patent application from 2017.


The paper explains the Radio stripe system design and also lists the advantages of such a system:

The radio stripe system facilitates a flexible and cheap cell-free Massive MIMO deployment. Cheapness comes from many aspects: (i) deployment does not require highly qualified personnel. Theoretically, a radio stripe needs only one (plug and play) connection either to the front-haul network or directly to the CPU; (ii) a conventional distributed massive MIMO deployment requires a star topology, i.e., a separate cable between each APs and a CPU, which may be economically infeasible. Conversely, radio stripe installation complexity is unaffected by the number of antenna elements, thanks to its compute-and-forward architecture. Hence, cabling becomes much cheaper; (iii) maintenance costs are cut down as a radio stripe system offers increased robustness and resilience: highly distributed functionality offer limited overall impact on the network when few stripes being defected; (iv) low heat-dissipation makes cooling systems simpler and cheaper. While cellular APs are bulky, radio stripes enable invisible installation in existing construction elements as exemplified in Fig. below. Moreover, a radio stripe deployment may integrate for example temperature sensors, microphones/speakers, or vibration sensors, and provide additional features such as fire alarms, burglar alarms, earthquake warning, indoor positioning, and climate monitoring and control.


According to the Ericsson post:

One of the inventors and researchers behind the concept, Jan Hederén, Strategist at Ericsson 4G5G Development, says: 

"Although a large-scale installation of distributed MIMO can provide excellent performance, it can also become an impractical and costly "spaghetti-monster" of cables in case dedicated cables are used to connect the antenna elements.

To be easy to deploy, we need to connect and integrate the antenna elements inside a single cable. We call this solution the "radio stripe" which is an easy way to create a large scale distributed, serial, and integrated antenna system." Says, also inventors and researcher behind the concept."

This visionary concept is an extension of how to build and enhance the capability of current networks. The Radio Stripe systems offers, so to say, new colors and flavors in how we increase the performance of mobile networks.

The Radio Stripe vision is focused on improvements to the reach and quality of radio connectivity in the access part of the mobile network. It shares all other resources (transport, baseband, management, core) with current mobile solutions.

I am looking forward to reading a lot more about this kind of approach in the future and probably some deployment videos too.

Related post:



xoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxo



I am running a webinar this week looking at 5G @ MWC 2019 on behalf of Parallel Wireless (#PWTechTrain) . Along with antennas, I plan to talk about lot more things. Register here.

Saturday 24 November 2018

5G Top-10 Misconceptions


Here is a video we did a few weeks back to clear the misconceptions about 5G. The list above summarizes the topics covered.



The video is nearly 29 minutes long. If you prefer a shorter version or are bored of hearing me 😜 then a summary version (just over 3 minutes) is in 3G4G tweet below.


The slides can be downloaded from our Slideshare channel as always.

As always, we love your feedback, even when you strongly disagree.

Other interesting recent posts on 5G:


Monday 24 September 2018

5G New Radio Standards and other Presentations


A recent Cambridge Wireless event 'Radio technology for 5G – making it work' was an excellent event where all speakers delivered an interesting and insightful presentation. These presentations are all available to view and download for everyone for a limited time here.

I blogged about the base station antennas last week but there are other couple of presentations that stood out for me.


The first was an excellent presentation from Sylvia Lu from u-Blox, also my fellow CW Board Member. Her talk covered variety of topics including IoT, IIoT, LTE-V2X and Cellular positioning, including 5G NR Positioning Trend. The presentation is embedded below and available to download from Slideshare





The other presentation on 5G NR was one from Yinan Qi of Samsung R&D. His presentation looked at variety of topics, mainly Layer 1 including Massive MIMO, Beamforming, Beam Management, Bandwidth Part, Reference Signals, Phase noise, etc. His presentation is embedded below and can be downloaded from SlideShare.




Related Posts:

Friday 21 September 2018

Base Station Antenna Considerations for 5G

I first mentioned Quintel in this blog three years back for their innovations in 4T8R/8T8R antennas. Since then they have been going strength to strength.


I heard David Barker, CTO of Quintel at Cambridge Wireless event titled "Radio technology for 5G – making it work" talking about the antennas consideration for 5G. There are quite a few important areas in this presentation for consideration. The presentation is embedded below:



Related Posts:

Sunday 7 February 2016

The Art of Disguising Cellular Antennas

When I did a blog post 'Disguising Small Cells in Rural areas' last year, many people were surprised to see these things. So here is another post showing how the antennas looks like and how they have to be disguised to blend in with the environment.


The above pictures shows fake date trees (with dates) near Koutoubia mosque, Marrakech, designed to blend in with the surroundings. In fact I have been told that these fake date trees are common in the Middle East and North African countries.


The above picture is from Dubai, showing similar palm tree. Source unknown.


The above picture, courtesy of Andy Sutton on Twitter shows a cell site near Blandford Forum. I hope you can spot the fake tree on top right.


Another one, courtesy of Andy Sutton on Twitter shows a cell site between motorway M56, J10 & 11 in Cheshire. Single operator but could be shared, single frequency band, x-pole with 3 cell sectors. Only two of the possible 3 cell sectors connected here. Pointing up and down motorway hence 4 feeders.







Another one courtesy of Andy Sutton on Twitter. Its been disguised to not look out of place unless someone is observing very carefully.
All three are fake trees and each is a separate cellular installation. The location is Lancashire, off the A6 between Slyne and Bolton-le-Sands. They are all different operators, left to right, O2, T-Mobile, Orange - although two will become one as part of EE of course.


Modern Art and Cellular Antenna, courtesy of Andy Sutton on Twitter.

What will happen when we transition to 5G, where we will have a lot more antennas because of MIMO (massive or not). China Mobile is researching into Smart Tiles, which are antennas that can be hidden inside Chinese characters. See the following for example:

With more antennas becoming commonplace in the urban environment, operators and vendors will have to keep up coming with innovative ways to disguise the antennas and hope no one notices.

See Also:


Sunday 4 October 2015

Updates from the 3GPP RAN 5G Workshop - Part 2

I have finally got round to having a look at some more presentations on 5G from the recently concluded 3GPP RAN 5G Workshop. Part 1 of the series is here.
Panasonic introduced this concept of Sub-RAT's and Cradle-RAT's. I think it should be obvious from the picture above what they mean but you can refer to their presentation here for more details.


Ericsson has provided a very detailed presentation (but I assume a lot of slides are backup slides, only for reference). They have introduced what they call as "NX" (No compatibility constraints). This is in line to what other vendors have referred to as well that above 6GHz, for efficiency, new frame structures and waveforms would serve best. Their slides are here.



Nokia's proposal is that in the phase 1 of 5G, the 5G Access point (or 5G NodeB) would connect to the 4G Evolved Packet Core (EPC). In phase 2, both the LTE and the 5G (e)NodeB's would connect to the 5G core. Their presentation is available here.

Before we move on to the next one, I should mention that I am aware of some research that is underway, mostly by universities where they are exploring an architecture without a centralised core. The core network functionality would be distributed and some of the important data would be cached on the edge. There will be challenges to solve regarding handovers and roaming; also privacy and security issues in the latter case.
I quite like the presentation by GM research about 5G in connected cars. They make a very valid point that "Smartphones and Vehicles are similar but not the same. The presentation is embedded below.



Qualcomm presented a very technical presentation as always, highlighting that they are thinking about various future scenarios. The picture above, about phasing is in a way similar to the Ericsson picture. It also highlights what we saw in part 1, that mmW will arrive after WRC-19, in R16. Full presentation here.


The final presentation we are looking is by Mitsubishi. Their focus is on Massive MIMO which may become a necessity at higher frequencies. As the frequency goes higher, the coverage goes down. To increase the coverage area, beamforming can be used. The more the antennas, the more focused the beam could be. They have also proposed the use of SC-FDMA in DL. Their presentation is here and also embedded below.



Sunday 14 June 2015

Using 8T8R Antennas for TD-LTE


People often ask at various conferences if TD-LTE is a fad or is it something that will continue to exist along with the FDD networks. TDD networks were a bit tricky to implement in the past due to the necessity for the whole network to be time synchronised to make sure there is no interference. Also, if there was another TDD network in an adjacent band, it would have to be time synchronised with the first network too. In the areas bordering another country where they might have had their own TDD network in this band, it would have to be time synchronised too. This complexity meant that most networks were happy to live with FDD networks.

In 5G networks, at higher frequencies it would also make much more sense to use TDD to estimate the channel accurately. This is because the same channel would be used in downlink and uplink so the downlink channel can be estimated accurately based on the uplink channel condition. Due to small transmit time intervals (TTI's), these channel condition estimation would be quite good. Another advantage of this is that the beam could be formed and directed exactly at the user and it would appear as a null to other users.

This is where 8T8R or 8 Transmit and 8 Receive antennas in the base station can help. The more the antennas, the better and narrower the beam they can create. This can help send more energy to users at the cell edge and hence provide better and more reliable coverage there.  

SONWav Operator Solution

How do these antennas look like? 8T8R needs 8x Antennas at the Base Station Cell, and this is typically delivered using four X-Polar columns about half wavelength apart. I found the above picture on antenna specialist Quintel's page here, where the four column example is shown right. At spectrum bands such as 2.3GHz, 2.6GHz and 3.5GHz where TD-LTE networks are currently deployed, the antenna width is still practical. Quintel’s webpage also indicates how their technology allows 8T8R to be effectively emulated using only two X-Polar columns thus promising Slimline antenna solutions at lower frequency bands. China Mobile and Huawei have claimed to be the first ones to deploy these four X-Pol column 8T8R antennas. Sprint, USA is another network that has been actively deploying these 8T8R antennas.

There are couple of interesting tweets that show their kit below:

In fact Sprint has very ambitious plans. The following is from a report in Fierce Wireless:

Sprint's deployment of 8T8R (eight-branch transmit and eight-branch receive) radios in its 2.5 GHz TDD LTE spectrum is resulting in increased data throughput as well as coverage according to a new report from Signals Research. "Thanks to TM8 [transmission mode 8] and 8T8R, we observed meaningful increases in coverage and spectral efficiency, not to mention overall device throughput," Signals said in its executive summary of the report.

The firm said it extensively tested Sprint's network in the Chicago market using Band 41 (2.5 GHz) and Band 25 (1.9 GHz) in April using Accuver's drive test tools and two Galaxy Note Edge smartphones. Signals tested TM8 vs. non-TM8 performance, Band 41 and Band 25 coverage and performance as well as 8T8R receive vs. 2T2R coverage/performance and stand-alone carrier aggregation.

Sprint has been deploying 8T8R radios in its 2.5 GHz footprint, which the company has said will allow its cell sites to send multiple data streams, achieve better signal strength and increase data throughput and coverage without requiring more bandwidth.

The company also has said it will use carrier aggregation technology to combine TD-LTE and FDD-LTE transmission across all of its spectrum bands. In its fourth quarter 2014 earnings call with investors in February, Sprint CEO Marcelo Claure said implementing carrier aggregation across all Sprint spectrum bands means Sprint eventually will be able to deploy 1900 MHz FDD-LTE for uplink and 2.5 GHz TD-LTE for downlink, and ultimately improve the coverage of 2.5 GHz LTE to levels that its 1900 MHz spectrum currently achieves. Carrier aggregation, which is the most well-known and widely used technique of the LTE Advanced standard, bonds together disparate bands of spectrum to create wider channels and produce more capacity and faster speeds.

Alcatel-Lucent has a good article in their TECHzine, an extract from that below:

Field tests on base stations equipped with beamforming and 8T8R technologies confirm the sustainability of the solution. Operators can make the most of transmission (Tx) and receiving (Rx) diversity by adding in Tx and Rx paths at the eNodeB level, and beamforming delivers a direct impact on uplink and downlink performance at the cell edge.

By using 8 receiver paths instead of 2, cell range is increased by a factor of 1.5 – and this difference is emphasized by the fact that the number of sites needed is reduced by nearly 50 per cent. Furthermore, using the beamforming approach in transmission mode generates a specific beam per user which improves the quality of the signal received by the end-user’s device, or user equipment (UE). In fact, steering the radiated energy in a specific direction can reduce interference and improves the radio link, helping enable a better throughput. The orientation of the beam is decided by shifting the phases of the Tx paths based on signal feedback from the UE. This approach can deliver double the cell edge downlink throughput and can increase global average throughput by 65 per cent.

These types of deployments are made possible by using innovative radio heads and antenna solutions.  In traditional deployments, it would require the installation of multiple remote radio heads (RRH) and multiple antennas at the site to reach the same level of performance. The use of an 8T8R RRH and a smart antenna array, comprising 4 cross-polar antennas in a radome, means an 8T8R sector deployment can be done within the same footprint as traditional systems.



Anyone interested in seeing pictures of different 8T8R antennas like the one above, see here. While this page shows Samsung's antennas, you can navigate to equipment from other vendors.

Finally, if you can provide any additional info or feel there is something incorrect, please feel free to let me know via comments below.

Sunday 19 April 2015

3GPP Release-13 work started in earnest


The 3GPP news from some months back listed the main RAN features that have been approved for Release-13 and the work has already started on them. The following are the main features (links contain .zip files):

  • LTE in unlicensed spectrum (aka Licensed-Assisted Access) - RP-150055
  • Carrier Aggregation enhancements - RP-142286
  • LTE enhancements for Machine-Type Communications (MTC) - RP-141865
  • Enhancements for D2D - RP-142311
  • Study Item Elevation Beamforming / Full-Dimension MIMO - RP-141831
  • Study Item Enhanced multi-user transmission techniques - RP-142315
  • Study Item Indoor positioning - RP-141102
  • Study Item Single-cell Point-to-Multipoint (SC-PTM) - RP-142205


Another 3GPP presentation from late last year showed the system features that were being planned for Rel-13 as shown above.

I have also posted a few items earlier relating to Release13, as follows:


Ericsson has this week published a whitepaper on release 13, with a vision for 'Networked Society':
The vision of the Networked Society, where everything that benefits from being connected will be connected, places new requirements on connectivity. LTE is a key component in meeting these demands, and LTE release 13 is the next step in the LTE evolution.
Their whitepaper embedded below:



It should be pointed out that 5G work does not start until Release-15 as can be seen from my tweet

xoxoxo Added Later (26/04/2015) xoxoxo
I came across this presentation from Keysight (Agilent) where Moray Rumney has provided information in much more detail.


Saturday 11 October 2014

A quick update on Antennas

There were couple of very interesting and useful presentations from the LTE World Summit 2014 that I have been thinking for a while to embed in the blog. The first is a market overview from Signals Research Group. The research is focussed more on the US market but it has some very interesting insights. The slideset is embedded below:



The other presentation is from Commscope on Base Station Antennas (BSA) for capacity improvement. I really liked the simplicity of the diagrams. Anyone interested in studying more indepth on the antennas are encouraged to check out my old post here. The complete slideset is below:



Saturday 27 September 2014

Elevation Beamforming / Full-Dimension MIMO


Four major Release-13 projects have been approved now that Release-12 is coming to a conclusion. One of them is Full dimension MIMO. From the 3GPP website:

Leveraging the work on 3D channel modeling completed in Release 12, 3GPP RAN will now study the necessary changes to enable elevation beamforming and high-order MIMO systems. Beamforming and MIMO have been identified as key technologies to address the future capacity demand. But so far 3GPP specified support for these features mostly considers one-dimensional antenna arrays that exploit the azimuth dimension. So, to further improve LTE spectral efficiency it is quite natural to now study two-dimensional antenna arrays that can also exploit the vertical dimension.
Also, while the standard currently supports MIMO systems with up to 8 antenna ports, the new study will look into high-order MIMO systems with up to 64 antenna ports at the eNB, to become more relevant with the use of higher frequencies in the future.
Details of the Study Item can be found in RP-141644.
There was also an interesting post by Eiko Seidel in the 5G standards group:

The idea is to introduce carrier and UE specific tilt/beam forming with variable beam widths. Improved link budget and reduced intra- and inter-cell interference might translate into higher data rates or increased coverage at cell edge. This might go hand in hand with an extensive use of spatial multiplexing that might require enhancements to today’s MU-MIMO schemes. Furthermore in active antenna array systems (AAS) the power amplifiers become part of the antenna further improving the link budget due to the missing feeder loss. Besides a potentially simplified installation the use of many low power elements might also reduce the overall power consumption. 

At higher frequencies the antenna elements can miniaturized and their number can be increased. In LTE this might be limited to 16, 32 or 64 elements while for 5G with higher frequency bands this might allow for “massive MIMO”. 

WG: Primary RAN1 (RP-141644) 
started 06/2014 (RAN#64), completion date 06/2015 (RAN#68)
work item might follow the study with target 12/2015 (RAN#70) 

Supporting companies
Samsung/NSN, all major vendors and operators 

Based on RAN1 Rel.12 Study Item on 3D channel model (TR36.873) 

Objectives 
Phase 1: antenna configurations and evaluation scenarios Rel.12 performance evaluation with 3D channel model 

Phase 2: study and simulate FD-MIMO enhancement identify and evaluate techniques, analyze specification impact performance evaluation for 16, 32, 64 antenna elements enhancements for SU-/MU-MIMO (incl. higher dimension MU-MIMO) (keep the maximum number of layer per UE unchanged to 8)


An old presentation from Samsung is embedded below that will provide more insight into this technology:



Related post:

Wednesday 17 July 2013

Decision Tree of Transmission Modes (TM) for LTE


4G Americas have recently published whitepaper titled "MIMO and Smart Antennas for Mobile Broadband Systems" (available here). The above picture and the following is from that whitepaper:

Figure 3 above shows the taxonomy of antenna configurations supported in Release-10 of the LTE standard (as described in 3GPP Technical Specification TS 36.211, 36.300). The LTE standard supports 1, 2, 4 or 8 base station transmit antennas and 2, 4 or 8 receive antennas in the User Equipment (UE), designated as: 1x2, 1x4, 1x8, 2x2, 2x4, 2x8, 4x2, 4x4, 4x8, and 8x2, 8x4, and 8x8 MIMO, where the first digit is the number of antennas per sector in the transmitter and the second number is the number of antennas in the receiver. The cases where the base station transmits from a single antenna or a single dedicated beam are shown in the left of the figure. The most commonly used MIMO Transmission Mode (TM4) is in the lower right corner, Closed Loop Spatial Multiplexing (CLSM), when multiple streams can be transmitted in a channel with rank 2 or more.

Beyond the single antenna or beamforming array cases diagrammed above, the LTE standard supports Multiple Input Multiple Output (MIMO) antenna configurations as shown on the right of Figure 3. This includes Single User (SU-MIMO) protocols using either open loop or closed loop modes as well as transmit diversity and Multi-User MIMO (MU-MIMO). In the closed loop MIMO mode, the terminals provide channel feedback to the eNodeB with Channel Quality Information (CQI), Rank Indications (RI) and Precoder Matrix Indications (PMI). These mechanisms enable channel state information at the transmitter which improves the peak data rates, and is the most commonly used scheme in current deployments. However, this scheme provides the best performance only when the channel information is accurate and when there is a rich multi-path environment. Thus, closed loop MIMO is most appropriate in low mobility environments such as with fixed terminals or at pedestrian speeds.

In the case of high vehicular speeds, Open Loop MIMO may be used, but because the channel state information is not timely, the PMI is not considered reliable and is typically not used. In TDD networks, the channel is reciprocal and thus the DL channel can be more accurately known based on the uplink transmissions from the terminal (the forward link’s multipath channel signature is the same as the reverse link’s – both paths use the same frequency block). Thus, MIMO improves TDD networks under wider channel conditions than in FDD networks.

One may visualize spatial multiplexing MIMO operation as subtracting the strongest received stream from the total received signal so that the next strongest signal can be decoded and then the next strongest, somewhat like a multi-user detection scheme. However, to solve these simultaneous equations for multiple unknowns, the MIMO algorithms must have relatively large Signal to Interference plus Noise ratios (SINR), say 15 dB or better. With many users active in a base station’s coverage area, and multiple base stations contributing interference to adjacent cells, the SINR is often in the realm of a few dB. This is particularly true for frequency reuse 1 systems, where only users very close to the cell site experience SINRs high enough to benefit from spatial multiplexing SU-MIMO. Consequently, SU-MIMO works to serve the single user (or few users) very well, and is primarily used to increase the peak data rates rather than the median data rate in a network operating at full capacity.

Angle of Arrival (AoA) beamforming schemes form beams which work well when the base station is clearly above the clutter and when the angular spread of the arrival is small, corresponding to users that are well localized in the field of view of the sector; in rural areas, for example. To form a beam, one uses co-polarized antenna elements spaced rather closely together, typically lamda/2, while the spatial diversity required of MIMO requires either cross-polarized antenna columns or columns that are relatively far apart. Path diversity will couple more when the antennas columns are farther apart, often about 10 wavelengths (1.5m or 5’ at 2 GHz). That is why most 2G and 3G tower sites have two receive antennas located at far ends of the sector’s platform, as seen in the photo to the right. The signals to be transmitted are multiplied by complex-valued precoding weights from standardized codebooks to form the antenna patterns with their beam-like main lobes and their nulls that can be directed toward sources of interference. The beamforming can be created, for example, by the UE PMI feedback pointing out the preferred precoder (fixed beam) to use when operating in the closed loop MIMO mode TM4.

For more details, see the whitepaper available here.

Related posts:


Monday 25 February 2013

LTE-A: Downlink Transmission Mode 9 (TM-9)

When LTE was introduced in Release-8 it had 7 transmission modes that were increased to 8 in Release-9. Earlier, I posted an R&S whitepaper on the different Transmission modes (10K+ views already) that listed transmission modes till TM 8. In Release-10 (LTE-A) 3GPP Introduced a new transmission mode, TM 9. TM9 is designed to help reduce interference between base stations to maximise signal stability and boost performance. The new TM-9 enables the enhancement of network capabilities and performance with minimum addition of overhead. TM9 is designed to combine the advantages of high spectrum efficiency (using higher order MIMO) and cell-edge data rates, coverage and interference management (using beamforming). Flexible and dynamic switching between single-user MIMO (SU-MIMO) and an enhanced version of multi-user MIMO (MU-MIMO) is also provided.



A new Downlink Control Information (DCI) format - known as format 2C - is used for TM9 data scheduling. Two new reference signals are defined in TM9: Channel State Information Reference Signal (CSI-RS) and Demodulation Reference Signal (DMRS). The first is used from the UE to calculate and report the CSI feedback (CQI/PMI/RI), while the latter is an evolution - providing support for more layers - of the UE specific reference signal that is already used for beamforming in Rel-9, and is used for signal demodulation. TM-9 is particularly smart as it can detect when a mobile device is being used and send a different type of signal that is optimal for a mobile device (variable DM-RS – demodulation reference signals). This maximises the efficient use of the base station and guarantee’s a decent data rate for users.


Early results in SK Telecom press release are positive with a claimed 10-15% increase in data rates in locations where there was known inter-cell interference.

I also looked into couple of books and here is one explanation from An Introduction to LTE by Chris Cox.


To use eight layer spatial multiplexing, the base station starts by configuring the mobile into a new transmission mode, mode 9. This supports both single user and multiple user MIMO, so the base station can quickly switch between the two techniques without the need to change transmission mode.

The base station schedules the mobile using a new DCI format, 2C. In the scheduling command, it specifies the number of layers that it will use for the data transmission, between one and eight. It does not have to specify the precoding matrix, because that is transparent to the mobile. The base station then transmits the PDSCH on antenna ports 7 to 7 + n, where n is the number of layers that the mobile is using. The maximum number of codewords is two, the same as in Release 8.

The mobile still has to feed back a precoding matrix indicator, which signals the discrepancy between the precoding that the base station is transparently providing and the precoding that the mobile would ideally like to use. Instead of using the PMI, however, the mobile feeds back two indices, i1 and i2. Both of these can vary from 0 to 15, which provides more finely-grained feedback than the PMI did and in turn improves the performance of the multiple user MIMO technique. The base station can then use these indices to reconstruct the requested precoding matrix.


Embedded below is an extract from Google books for Lte-Advanced Air Interface Technology By Xincheng Zhang, Xiaojin Zhou

Friday 5 October 2012

3D-Beamforming and 3D-MIMO

When I did the summary from Rel-12 workshop, one of the feature proposed by many companies was the feature on 3D MIMO/Beamforming. Here is a quick introduction from different presentations.




A presentation by China mobile lists the motivations and Challenges is embedded below: