Monday, 28 March 2011

Friday, 25 March 2011

3GPP – DVB Workshop for Next generation Mobile TV standards

TSG RAN and TSG CT hosted a joint workshop with DVB project on commonalities between DVB-NGH and eMBMS

The workshop was opened by the RAN Chairman Mr. Takehiro Nakamura on Wednesday 16th March 11:07. This is the joint session between TSG RAN, TSG CT and DVB project expert. TSG CT Chairman Mr. Hannu Hietalahti reminded that the workshop can't make any formal decisions that would be binding on either 3GPP side or DVB project side. Any agreement needs to be confirmed in DVB project and 3GPP separately. From 3GPP side this needs to be done by 3GPP TSG RAN and 3GPP TSG CT meetings during this week. The goal of the workshop is to find a common agreement how to proceed the future work on DVB-NGH and eMBMS convergence and decide the best way forward. The joint session is expected to make recommendations to TSG SA #51 based on the service requirements for DVB-NGH and the commonalities with eMBMS that can be identified. TSG SA #51 will decide the best way forward on 3GPP side.

The MBMS presentation was embedded in this post. The DVB presentation is embedded below:



The minutes of the meeting are available here: http://3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_51/Docs/SP-110185.zip

All the documents from this workshop are available here: http://www.3gpp.org/ftp/workshop/2011-03-16_RAN-CT-DVB/

It was agreed that for any 3GPP work the normal 3GPP working procedures should be used. The supporting 3GPP member companies were requested to initiate Study items in the appropriate 3GPP working groups with the aim of sending them for approval during the next Plenary cycle.

It was noted that 3GPP Rel-11 stage 1 is going to be frozen in September 2011. It was seen 3GPP DVB-NGH can be a part of Rel-11 if there are interest in 3GPP community. The interesting companies are expected to contribute according to 3GPP working procedures.

Interesting M2M Video by ETSI

Machine-to Machine Communications - David Boswarthick (15/02/2011) from ETSI – World Class Standards on Vimeo.

ETSI M2M: Building the Internet of Things

Presented by: David Boswarthick, ETSI Technical Expert

Live Presentation during MWC 2011: ETSI stand, Monday, 15 February 2011

_ _ _ _ _ _ _

About the presenter:

David Boswarthick, Technical Officer, ETSI

David has been extensively involved for over 10 years in the standardization activities of mobile, fixed and convergent networks in both the European Telecommunications Standards Institute (ETSI) and the 3rd Generation Partnership Project (3GPP). He is currently involved in the M2M standards group which is defining an end to end architecture and requirements for multiple M2M applications including Smart Metering, healthcare and enhanced home living. David holds a Bachelor's Honours Degree in Telecommunications from the University of Plymouth, and a Master's Degree in Networks and Distributed systems from the University of Nice and Sophia Antipolis, France.

Tuesday, 22 March 2011

3GPP Official 'MBMS support in E-UTRAN' - Mar 2011

Last month I blogged about the MBMS feature in Rel-9. The 3GPP official presentation on MBMS is now available. Embedded below:

Presentation can be downloaded from Slideshare.

This presentation was a part of Joint one hour session of 3GPP RAN and 3GPP CT on March 16th 2011, 11.00 am – 12.00 p.m. More on this coming soon.

Monday, 21 March 2011

A quick primer on Coordinated Multi-point (CoMP) Technology

From NTT Docomo Technical Journal:

CoMP is a technology which sends and receives signals from multiple sectors or cells to a given UE. By coordinating transmission among multiple cells, interference from other cells can be reduced and the power of the desired signal can be increased.

Coordinated Multi-point Transmission/Reception:

The implementation of intracell/inter-cell orthogonalization on the uplink and downlink in LTE Rel. 8 contributed to meeting the requirements of capacity and cell-edge user throughput. On the downlink, simultaneously connected UE are orthogonalized in the frequency domain. On the other hand, they are orthogonalized on the uplink, in the frequency domain as well as the code domain, using cyclic shift and block spreading. It is possible to apply fractional frequency reuse (A control method which assigns different frequency ranges for cell-edge UE) to control interference between cells semi-statically, but this is done based on randomization in LTE Rel. 8. Because of this, we are planning to study CoMP technology, which performs signal processing for coordinated transmission and reception by multiple cells to one or more UE, as a technology for Rel. 11 and later in order to extend the intracell/ inter-cell orthogonalization in LTE Rel. 8 to operate between cells.


Independent eNode B and Remote Base Station Configurations:

There are two ways to implement CoMP technology: autonomous distributed control based on an independent eNode B configuration, or centralized control based on Remote Radio Equipment (RRE) (Figure 7). With an independent eNode B configuration, signaling over wired transmission paths is used between eNode B to coordinate among cells. Signaling over wired transmission paths can be done with a regular cell configuration, but signaling delay and overhead become issues, and ways to increase signaling speed or perform high-speed signaling via UE need study. With RRE configurations, multiple RREs are connected via an optical fiber carrying a baseband signal between cells and the central eNode B, which performs the baseband signal processing and control, so the radio resources between the cells can be controlled at the central eNode B. In other words, signaling delay and overhead between eNode B, which are issues in independent eNode B configurations, are small in this case, and control of high speed radio resources between cells is relatively easy. However, high capacity optical fiber is required, and as the number of RRE increases, the processing load on the central eNode B increases, so there are limits on how this can be applied. For these reasons, it is important to use both distributed control based on independent eNode B configurations and centralized control based on RRE configurations as appropriate, and both are being studied in preparation for LTE-Advanced.

Downlink Coordinated Multi-point Transmission:

Downlink coordinated multi-point transmission can be divided into two categories: Coordinated Scheduling/ Coordinated Beamforming (CS/CB), and joint processing (Figure 8). With CS/CB, a given subframe is transmitted from one cell to a given UE, as shown in Fig. 8 (a), and coordinated beamforming and scheduling is done between cells to reduce the interference caused to other cells. On the other hand, for joint processing, as shown in Fig. 8 (b-1) and (b-2), joint transmission by multiple cells to a given UE, in which they transmit at the same time using the same time and frequency radio resources, and dynamic cell selection, in which cells can be selected at any time in consideration of interference, are being studied. For joint transmission, two methods are being studied: non-coherent transmission, which uses soft-combining reception of the OFDM signal; and coherent transmission, which does precoding between cells and uses in-phase combining at the receiver.

Uplink Multi-cell Reception:

With uplink multi-cell reception, the signal from a UE is received by multiple cells and combined. In contrast to the downlink, the UE does not need to be aware of whether multi-cell reception is occurring, so it should have little impact on the radio interface specifications.

Friday, 18 March 2011

Roadmap to Operational Excellence for Next Generation Mobile Networks


This presentation is from:

FP7 SOCRATES Final Workshop on Self-Organisation in Mobile Networks February 22, 2011 - Karlsruhe, Germany

This and all other presentations from this workshop are available to download from here.

Wednesday, 16 March 2011

Direct Communication between devices in case of disasters

Yesterday, a discussion started after I read this article on RCR Wireless News:

As in every major disaster, communications networks quickly showed their inherent weakness in times of greatest need. Japan's NTT Communications reported outages affecting Internet voice data that relies on IP-VPN technology.

In a brief statement, the operator apologized for the "trouble and inconvenience," following the string of earthquakes and significant aftershocks that rattled nerves and buildings throughout much of Japan. Some communication services are no longer available, NTT said, and telephone service, particularly long-distance service, is showing strain as well.

Service disruptions have been reported by all three of the major mobile operators in Japan, according to BusinessWeek.

This prompted me to ask on Twitter about which technologies are available that can help the mobile network cope with these problem.

Here are few approaches:

I blogged earlier about Multihop Cellular Networks (MCN) and ODMA. These technologies have their own limitations and problems and I have not heard of anything more about them being standardised or adopted.

Another post was on Ad-Hoc Networks that can be formed in case of failures resulting in Mobile devices being able to communicate directly without the need for network or base stations. The slight problem is that this approach replies on WiFi being available which may not always be the case.

A colleague suggested that in Tetra, Direct Mode of operation is available that is intended for situations like these. A presentation is embedded below:




Steven Crowley on twitter suggested that 802.16m has already started working in this direction. I got a related presentation on that which is embedded below:




Finally, Kit Kilgour mentioned about DSAC (Domain Specific Access Control) whose intention is to discontinue the voice service in emergency (to avoid congestion) but continue the packet domain normally. I have not looked at DSAC on this blog but in LTE instead Service Specific Access Control (SSAC) is used since LTE is PS only. See the blog entry here.

Please feel free to add any more information on this topic in the comments.

Monday, 14 March 2011

LTE Physical Layer Measurements of RSRP and RSRQ

One of the things on my mind for long time was to find a bit more about RSRP and RSRQ.

The following is from Agilent Whitepaper:

The UE and the eNB are required to make physical layer measurements of the radio characteristics. The measurement definitions are specified in 3GPP TS 36.214. Measurements are reported to the higher layers and are used for a variety of purposes including intra- and inter-frequency handover, inter-radio access technology (inter-RAT) handover, timing measurements, and other purposes in support of RRM.

Reference signal receive power (RSRP):

RSRP is the most basic of the UE physical layer measurements and is the linear average (in watts) of the downlink reference signals (RS) across the channel bandwidth. Since the RS exist only for one symbol at a time, the measurement is made only on those resource elements (RE) that contain cell-specific RS. It is not mandated for the UE to measure every RS symbol on the relevant subcarriers. Instead, accuracy requirements have to be met. There are requirements for both absolute and relative RSRP. The absolute requirements range from ±6 to ±11 dB depending on the noise level and environmental conditions. Measuring the difference in RSRP between two cells on the same frequency (intra-frequency measurement) is a more accurate operation for which the requirements vary from ±2 to ±3 dB. The requirements widen again to ±6 dB when the cells are on different frequencies (inter-frequency measurement).

Knowledge of absolute RSRP provides the UE with essential information about the strength of cells from which path loss can be calculated and used in the algorithms for determining the optimum power settings for operating the network. Reference signal receive power is used both in idle and connected states. The relative RSRP is used as a parameter in multi-cell scenarios.

Reference signal receive quality (RSRQ):

Although RSRP is an important measure, on its own it gives no indication of signal quality. RSRQ provides this measure and is defined as the ratio of RSRP to the E-UTRA carrier received signal strength indicator (RSSI). The RSSI parameter represents the entire received power including the wanted power from the serving cell as well as all cochannel power and other sources of noise. Measuring RSRQ becomes particularly important near the cell edge when decisions need to be made, regardless of absolute RSRP, to perform a handover to the next cell. Reference signal receive quality is used only during connected states. Intra- and inter-frequency absolute RSRQ accuracy varies from ±2.5 to ±4 dB, which is similar to the interfrequency relative RSRQ accuracy of ±3 to ±4 dB.

The following is from R&S white paper:


The RSRP is comparable to the CPICH RSCP measurement in WCDMA. This measurement of the signal strength of an LTE cell helps to rank between the different cells as input for handover and cell reselection decisions. The RSRP is the average of the power of all resource elements which carry cell-specific reference signals over the entire bandwidth. It can therefore only be measured in the OFDM symbols carrying reference symbols.

The RSRQ measurement provides additional information when RSRP is not sufficient to make a reliable handover or cell reselection decision. RSRQ is the ratio between the RSRP and the Received Signal Strength Indicator (RSSI), and depending on the measurement bandwidth, means the number of resource blocks. RSSI is the total received wideband power including all interference and thermal noise. As RSRQ combines signal strength as well as interference level, this measurement value provides additional help for mobility decisions.

Assume that only reference signals are transmitted in a resource block, and that data and noise and interference are not considered. In this case RSRQ is equal to -3 dB. If reference signals and subcarriers carrying data are equally powered, the ratio corresponds to 1/12 or -10.79 dB. At this point it is now important to prove that the UE is capable of detecting and decoding the downlink signal under bad channel conditions, including a high noise floor and different propagation conditions that can be simulated by using different fading profiles.

I will be adding some conformance test logs at the 3G4G website for Measurement and Cell Selection/Re-selection that will give some more information about this.

In case you can provide a much simpler explanation or reference please feel free to add in the comment.

Thursday, 10 March 2011

1000th Blog post and I want your feedback


I started the 3G4G website 7 years back and in the next few years realised that maintaining website is very time consuming job. As a result I started the blog on the 3G4G website. Its been nearly 4 years since I started blogging. Initially I blogged on the 3G4G website and then moved to blogger. Over the time, the blog has become ever so popular and I regularly keep getting between 40,000 and 50,000 page views per month. In the next few months, I will touch the 1.5 million page views mark.

All this sounds great but I have not seen enough feedback and/or comments from you the readers. Some months back I added the feedback box at the bottom of the posts that you can use to provide me a quick feedback indicating if you found this post useful or not useful and if you would like more like these but I hardly get more than 1 or 2 feedbacks every post. The only one where I got some decent feedback was on the Dilbert post here. In the blog stats that was added last year by blogger, I can see that some of the posts even get good amount of views but not enough feedback. For example LTE-A UE categories has over 7000 views but just 3 very useful feedback. Another one on comparison of HSPA+ and LTE has over 4000 views since last May but the feedback is still not enough.

Over the last few years, a lot of my posts are being copied by others in entirety. Some of these blogs give credit to me but do not link my blog. Some of them do not even give me credit or link to the blog. In fact to stop some of these things, I started putting 'via 3g4g.blogspot.com' in the images and then I realised that some of these blogs, remove this and put the pictures up. Take for instance this post from TelecomDE, this blog post is copied from my blog post here. I created the picture from a presentation and that was from Huawei, so I added the Huawei logo in the picture. As you can see the Huawei picture is there but the 'via 3g4g.blogspot.com' has been removed. There are many instances of such things and I would like to thank some of my blog readers who point me out these things.

With my schedule being already extremely busy, I sometimes spend early mornings or late night, creating new blog posts with the things that are happening or about to happen in the wireless/telecom world. I think my blog covers some unique topics and I always add some useful pictures and images as it is said that 'A picture is worth a thousand words'. I would like to receive feedback from you, dear reader, on if you find this blog useful, how do you find it useful, what things you like most, what things you like least, how do you propose to change it for better.

I do get lots of personal mails from people saying how useful the blog and the website have been for them for Job hunting, etc. So If you found the Blog or the Website useful and you are a Linkedin user, can you please recommend the 3G4G website on Linkedin for me.

I will be deciding in the next few weeks, If I continue blogging and your feedback certainly will help. In the meantime, you can always follow me on Twitter where I am always on lookout for the latest in the field of wireless telecoms.