Saturday, 18 October 2008

WiMAX publicity videos from Alcatel-Lucent

Alcatel-Lucent (ALU) has couple of interesting videos on youtube on WiMAX.

The first one is more of educational video showing how WiMAX is useful for everyone in everyday life:



Honestly, other technologies could be as useful as WiMAX. The other one is more of marketing presentation showing ALU offers on WiMAX.



Interesting.

Thursday, 16 October 2008

LED-Fi: Replacement for WiFi Hotspots

Before we start, I have to confess that I made up LED-Fi. I was thinking more of LiFi but there is already a LiFi technology from Panasonic (not al all related ti this one though).
According to a post in cellular news, Lightbulbs Could Replace Wi-Fi Hotpsots in future:

­Boston University's College of Engineering is launching a program, under a National Science Foundation grant, to develop the next generation of wireless communications technology based on visible light instead of radio waves. Researchers expect to piggyback data communications capabilities on low-power light emitting diodes, or LEDs, to create "Smart Lighting" that would be faster and more secure than current network technology.
This initiative aims to develop an optical communication technology that would make an LED light the equivalent of a Wi-Fi access point.

"Imagine if your computer, iPhone, TV, radio and thermostat could all communicate with you when you walked in a room just by flipping the wall light switch and without the usual cluster of wires," said BU Engineering Professor Thomas Little. "This could be done with an LED-based communications network that also provides light - all over existing power lines with low power consumption, high reliability and no electromagnetic interference. Ultimately, the system is expected to be applicable from existing illumination devices, like swapping light bulbs for LEDs."

Little envisions indoor optical wireless communications systems that use white LED lighting within a room - akin to the television remote control device - to provide Internet connections to computers, personal digital assistants, television and radio reception, telephone connections and thermostat temperature control.

With widespread LED lighting, a vast network of light-based communication is possible, Little noted. A wireless device within sight of an enabled LED could send and receive data though the air - initially at speeds in the 1 to 10 megabit per second range - with each LED serving as an access point to the network. Such a network would have the potential to offer users greater bandwidth than current RF technology.

Moreover, since this white light does not penetrate opaque surfaces such as walls, there is a higher level of security, as eavesdropping is not possible. LED lights also consume far less energy than RF technology, offering the opportunity to build a communication network without added energy costs and reducing carbon emissions over the long term.

The ability to rapidly turn LED lights on and off - so fast the change is imperceptible to the human eye - is key to the technology. Flickering light in patterns enables data transmission without any noticeable change in room lighting. And the technology is not limited to indoor lights; its first real test may very well come outdoors, in the automotive industry.

I can understand how the downlink would work but not sure how uplink data transfer would work.

Similar technology using Light Bulbs has been available for some time. See this and this.

Wednesday, 15 October 2008

More defections to LTE camp

Nearly a year back, I blogged about Verizon defecting to LTE rather than going for UMB as it would be its natural evolution path. Last week Canada's Bell Canada and Telus Mobility announced plans to overlay their CDMA networks with HSPA technology by 2010 with an eventual move to LTE technology.

In a recent blog, I mentioned that operators moving from EV-DO to LTE can go via HSPA path or can also go for eHRPD. Fortunately, 3GPP saw that some operators may move to 3GPP camp and leave 3GPP2 due to economy of scale and much more variety of handsets, test tools, etc. Going back to the news item:

The move follows Verizon Wireless' decision to deploy LTE in the 700 MHz spectrum it won earlier this year. However, Verizon is skipping an HSPA deployment, choosing to continue investing in its EV-DO network that will likely complement the new LTE network for some time. Telus said the HSPA deployment would enable "a smoother transition to long term evolution (LTE) technology."

"Bell's transition to the global 4G LTE standard with a combined EV-DO and HSPA network path aligns us with more than 30 major carriers worldwide planning a similar move to LTE," said Stephen Howe, CTO with the operator. "This broad global technology ecosystem will mean a fast, efficient and cost-effective network transition to 4G LTE, and access to the broadest possible range of next-generation phones and data services."

Telus Mobility and Bell Canada both won spectrum in Canada's AWS-1 auction.

Tuesday, 14 October 2008

Which way: Femtocells or UMA?

Discussions are again resurfacing about which technology should be used to improve coverage; Femtocells or UMA. Honestly, I have not been a big supporter of UMA (and you dont have to agree with me) and earlier this year when Nokia raised doubts about the technology, i stopped following it completely. Kineto has been the biggest supporter of UMA and is still carrying the torch.

Kineto recently received over $15 million in investment from Motorola that it plans to use to increase its reach in UMA. Last month it had received investment from NEC. One of the reasons for the resurgence could be because the UMA technology has matured since being used for some time. T-Mobile has already rolled Hotspot @ Home using UMA. Also more phones are now available supporting UMA.

One of the drawbacks that will always be present in case of UMA is that special handsets will be required that would support WiFi as UMA is based on 802.11. This means more expensive phones and higher consumption of power leading to smaller battery lives. One more problem with UMA is the interference due to other ISM band devices and there are many technologies like Bluetooth, etc that are competing for the band.

The drawback in case of Femtocells could be that their price is still quite high as complete Node B + RNC functionality is generally available in a Femtocell and at the same time all the aspects have not yet been standardised. Along with these, Femtocells that use the same spectrum as that of the operator can cause interference with the Macro cell. This would in turn require very clever management of spectrum frequencies, etc.

A possible long term solution could be (but I dont see anyone agreeing to it right now) that phones with UMA technology become more common and a combined UMA + Femtocell equipment is rolled out by the operator. At the end user premises, depending on the strength of rf reception, the equipment can either use UMA or normal Femtocell functionality. If this idea is agreed upon, then there would still be couple of years before all interworking and other technological problems are ironed out.

Monday, 13 October 2008

Femtocells and the stealing of Spectrum


When Femtocells are finally rolled out, it would be possible for anyone to create their own little mobile cell anywhere to enhance their coverage. At least that is what the Femtocells are supposed to help with. This would also mean that the spectrum would be open to abuse by someone who wants to abuse it.

Let's take a scenario in which someone buys a Femtocell from an operator in UK. The Femtocells will be operator specific since they will contain lots of parameters and addresses that would be terminating in the operator network. Then that person can take the Femtocell away to another country (say India) and connect the Femtocell to an Ethernet port in India. The IP packets would be routed via IP to the operator and the user is now connected via Femtocell to the UK operator even though he in in India. He would get the same treatment as in case he was in UK.

Let me point out that this would be illegal because the Spectrum in India would belong to an operator in India or this spectrum may be used for something completely different.

The operators and the device manufacturers are aware of this potential abuse. As a result they are going to use a two step approach. The first is that they would allow Femtocell to register from a registered telephone line via an IP address. They may have access to ISP data or would be aware of the range of IP address being used by the ISP. The Femtocell user will hence have to register their Telephone line and ISP with the network operator and if they change them then this would need to be informed to the operator. The second is that they would check the location of the device via GPS. This can have two problems. The first is the cost of the Femtocell will increase and the second is that unless the Femtocell is near a window or an open area, there would be no GPS signals received and the GPS approach may not work. One of the obvious use of Femtocell in London city for example is in the basements where there is absolutely no coverage due to their location.

Note that from the above you can see that even if the Femtocells are advertised as PnP or Zero Touch, etc., there would still be some overhead that will always be required.

Even if we assume that both the above approaches are being used, it may stop mass market fraud but may not be able to deter individuals who are smart enough to work around them. For example the user in India (example in the start) may use VPN to tunnel the IP packets to their home or registered address in UK and from there the packets will go to the operator network. Similarly it is not too difficult to fool the GPS receiver into believing its location.

The operators are aware and working on something better then the above strategy. I have not come across any papers yet suggesting work around these problems.

This also highlights an important problem regarding emergency calls. Should the emergency calls go via Femtocell or should they be re-directed to Macro cell. Again a clever algorithm would be needed for this. There could be a configurable parameter in the Femtocell which can check during the startup if Macrocell is present or not. If Macrocell is present then emergency calls should be re-directed and if not present then the user should be able to initiate it via Femtocell.

There are probably many more problems that would be highlighted once Femtocells are rolled out.

What on earth is this 4G, anyway?

Over the past two years I have been hearing a lot about next generation technologies. It all started by 3.5G i.e. HSPA evolution etc and hence the debate entered into the area of 4G.
Everybody comes along on the blogs, articles, tech magazines etc and make himself/herself comfortable as per their liking with the word 4G.

Some people use the term "4G" to describe WiMAX technology. This terminology i.e. 4G used by WiMax camp does indeed upset some people specially the ones in the LTE camp.

Everyday I come across individuals who have different view regarding the 4G terms. Some do shockingly tell me that neither WiMax nor LTE is a 4G technology rather LTE evolution or LTE advanced will be termed as a 4G technology.

I have literally reached to stage now where I think I should give up now and just leave to almighty to decide what actually a 4G technology is. If you ask me about my personal opinion on this then my view is quite clear in this. I categorize 1G as analog mobile, 2G as digital, 3G as CDMA, and 4G as anything using OFDM. It's pretty simple, it is straightforward, there's not a lot of haggling.

Wikipedia says "There is no formal definition for what 4G is; however, there are certain objectives that are projected for 4G. These objectives include: that 4G will be a fully IP-based integrated system. 4G will be capable of providing between 100 Mbit/s and 1 Gbit/s speeds both indoors and outdoors, with premium quality and high security."

By the Wikipedia definition, three out of four definitions are met under the existing definitions of WiMAX; nobody thinks that the current definition of WiMAX is going to be able to crank up to 1 Gbit/sec, but life, as they say, ain't so simple.

A spokesperson for Nokia has said "There's no official owner of who defines 4G," and you would think if anyone could tell you what 4G was/is/will be, it would be Nokia.

ITU-R is in the process of defining IMT-Advanced, but, funny enough, the standards body has backed away from the phrase 4G. IMT-Advanced is a "big tent" term that will/may/should encompasses 802.16m and LTE-Advanced which in turn are faster than WiMAX and LTE standards respective. Maybe?

If I understand this descent into acronyms and definitions, even the forthcoming, first generation LTE would not qualify as a 4G technology. That is, if we call IMT-Advanced as the term formerly known as 4G - but not called 4G by ITU-R.

I know this whole argument of 4G terms upset many people. They think and rightly so that the whole concept behind a 'Standards Body' is so that such arguments are moot. These guys think that people use different terms to coin their own standards for marketing, one-upmanship and generally nonconformist attitudes.

Well let's hope that some day somebiody will come out with a clear idnetity of the 4G technology which is acceptable to everybody. Meanwhile my friend in the picture above is working hard to find out what 4G really is.

Sunday, 12 October 2008

Revolution of Mobile Phones Arhitecture and Design


The war for the best phones design is heating up and giants like Nokia, Samsung and Sony Ericsson are doing everything they can to outdo each other in terms of design and different application provided on the phone.

There is no doubt this is the era is youths and you would be surprised to see their skills and various things they can do with their mobile phone.

The biggest question which arises is what exactly and how much one need from their mobile phone. If we consider all sections of the society then in my view five things which makes a mobile phone attractive are Talk, text, Music, Games and Mapsor does it so?

Well after the release of iPhone with touch screen the competiton has definitely taken a new dimension.

Continuing in this direction last week Nokia released a new phone at a press unveiling in London, the previously rumoured touch-screen Tube, which it now calls the Nokia 5800 XpressMusic phone.
This device, which has been pegged as Nokia's answer to the iPhone, is both Java and Flash-enabled.

Since the release of iPhone Nokia has been taunted for not having a handset that effectively competes with Apple's 3G iPhone. When Apple CEO Steve Jobs debuted the 3G iPhone, he took some swipes at the Finnish manufacturer by pointing out that the iPhone 3G managed to download a website in 21 seconds while the Nokia N95 took 33 seconds to load the same page.
This latest Nokia phone will have host of features that will be run off of Nokia's latest Symbian operating system, the S60 5th edition. The phone is the latest entrant into the arena to see which handset can become an IPK i.e. an iPhone Killer. As with many such devices, the 5800 has some features similar to Apple's iPhone 3G, and a few that make it unique.The phone will come in three different versions: a quad-band GSM with 850/1900 WCDMA, a quad-band GSM with 900/2100 WCDMA and Quad-band GSM with no 3G capabilities. It has both a 3.2-inch touch-screen display and a 3.2 megapixel camera, WiFi, GPS and HSDPA capabilities, stereo speakers, a touch-screen, drop down media bar menu and finger and stylus user interface controls. It has 8GB of memory, available through a microSD slot. A 16GB slot will be available next year.

It does get a wow out of your mouth after looking at the above specs for this latest Nokia phone.
One of the striking things that Nokia is proposing with its latest touch screen phone is the Music service which could be the start of something new. As per this music service users can download all the music they want and get to keep and play it forever.

Nokia's glitzy launch in London of its latest touch screen phone comes with Music service will have pleased music lovers and the gadget press alike, but UK mobile operators have expressed their displeasure by vowing not to sell the service over their networks.

While these operators will closely monitor this free music download service, their refusal to cooperate with Nokia stems from two, significant issues. Firstly, Nokia is insisting upon a profit-sharing deal albeit that operators can see little margin in selling the handset. Secondly, the operators will be saddled with much increased network traffic caused by the unlimited downloads associated with the service. The fear is that this could run into several Gigabytes per month per handset, which could cripple operators' existing data networks.

Insisting that the situation was not all gloom, Nokia claims to be negotiating with several operators in the hope it can sign several deals in time for Christmas. However, given the majority of the larger European operators already have, or are planning, a music download service, Nokia's Comes with Music can only be seen as a threat.

However, a recent study by market researcher TNS Technology revealed that people aged 16 to 64 wanted to download 64 music tracks a month--which, on a yearly basis, equates to over £600, making the Comes with Music service at £130 look more of an attractive proposition.
Keeping the competition alive, Research in Motion officially also recently unveiled the first touch-screen smartphone in its history. Known as the BlackBerry Storm, or 9500, this new BlackBerry is a 3G device and comes with a "responsive touch screen" that attempts to simulate the tactile experience of actual hardware.

Hewlett-Packard is also planning on releasing a consumer-oriented smartphone. The unnamed device will be released first in Europe, sometime in the late fourth quarter, and will be marketed by a mobile carrier and sold in retail stores. The phone will run on Windows Mobile 6.1, be a touch-screen device and have a full QWERTY keyboard. A worldwide release is scheduled for sometime in 2009.

This war of producing the best design for the mobile phone is definitely good for the consumers especially for the ones who feel proud in carrying a smarter gadget in the form of their mobile phone.

Wednesday, 8 October 2008

Future Mobile Terminals: Multiservice, Multinetwork, Multimode

There is an interesting paper in IEEE Wireless Comms Magazine 2008, " ENABLING MULTISERVICE ON 3G AND BEYOND: CHALLENGES AND FUTURE DIRECTIONS" and a gist of that article could also obtained from this presentation by one of its authors.
  • MultiService: The UE should be able to perform multiple services simultaneously. Though this is possible to quite an extent in the present phones, there are still limitations and few allowed combinations that will have to be changed
  • MultiNetwork: These MultiServices should not be restricted to a single network at any time. A user could be having a voice call using HSPA+ network while he is watching youtube clips using 802.11n.
  • MultiMode: For these MultiServices on MultiNetworks, the users will have to use MultiMode terminals with n different kinds protocol stacks. So the terminal would support WLAN, UMTS, HSPA+, LTE, 802.21, WiMAX, Bluetooth, DVB-H, etc. (sorry if missed something else)
This Multinetwork environment providing Multiservice with Multimode terminals is also referred to as Hetrogeneous Wireless Network or HWN.

The real challenge which has not yet been present on the current terminals is that these multiple technologies not only independently provides services to a user, but also interacts with others in a collaborative manner to provide a given QoS guarantees. This will probably require revolutionary design change from the existing approach of multiple protocol stacks each independent of each other.

Another big challenging problem to solve would be automatic handovers horizontally and vertically. A horizontal handover migrates a connection between two homogeneous networks. A vertical handover deals with the migration between heterogeneous networks (e.g., from cellular to WLAN). The terminal will need to have intelligence to handover a particular service horizontally or vertically independent of other services. The terminal will also have to take into account the delay and the loss associated with the handover.

This is all very interesting concept but the complexity and challenges will mean that this wont see light before 2016 or rather 2020.

Tuesday, 7 October 2008

Nortel 4G: Cracks in the wall

Sometime in distant past, it seemed that Nortel had everything. They were big in UMTS and HSPA, had a share of CDMA pie in Americas, had loads of patents in OFDM technology which is the basis of most Next Generation technologies, had strategic partnership and very much into R&D on WiMAX and LTE and at the same time also working on 4G Optical technologies.

Then they got rid of 3G and HSPA infrastructure by selling it to Alcatel (now Alcatel-Lucent) and started focussing on 4G only. Then their CDMA business started to suffer because people in Americas are moving onto GSM and CDMA growth opportunities are limited. Recently Nortel has again been in news because it wants to sell its Metro Ethernet Networks (MEN) business.


The MEN division includes Nortel's optical business and its carrier Ethernet work, including its Provider Backbone Transport (PBT) technology. That's big news, but so is the lowered forecast. After predicting single-digit sales growth this year, Nortel is now saying its 2008 revenues will be 2 to 4 percent less than the $10.95 billion it reported in 2007.

According to a report in Unstrung, Nortel isn't so keen on developing LTE either, despite repeated claims that it was well positioned to be a major player in that market. When asked during analyst conference call about what actions Nortel might take regarding its 4G developments, CEO Mike Zafirovski said the company is looking for "opportunities to de-risk" its investment. "Future consolidation is necessary in wireless. We're exploring options for 4G that will be best" for Nortel, its customers, and the industry, said the CEO, unhelpfully.

What might those options be? Zafirovski said that "what we did with UMTS and Wimax" are examples of what might happen. Nortel's WiMax strategy is now tied up in the Alvarion relationship, while it sold its 3G UMTS infrastructure business to Alcatel in late 2006.

Analysts, still parsing Nortel's words, see some value in Nortel getting help from partners. “Ever since Nortel exited the UMTS market it’s been next to impossible to see how investing in their own LTE base station would result in anything but huge losses," says Patrick Donegan, Heavy Reading's senior wireless analyst. "Going down the same OEM path as they have with WiMax would at least ensure that those huge losses won’t be suffered. Whether they can go beyond that and carve out a position in LTE which is actually profitable with an OEM partner is unclear but certainly plausible.”

But, just like with carrier Ethernet and optical, the market is too tough for Zafirovski to believe Nortel can be a leading and profitable player. "With eight, nine, ten players competing, industry dynamics require various forms of cooperation," he added.

Despite all the predictions and Hype, 4G or LTE is far away. WiMAX will be rolled out but in chunks and there are already too many people in WiMAX. What Nortel needs and is looking for is some significant partner or perhaps a merger (takeover?). In the meantime it maybe some time before its investors hears any good news from Nortel.

Monday, 6 October 2008

Beware of Mobile Billing Strategies...


Since most of the operators are now being forced in the corner due to competition, requiring to offer bigger and cheaper bundles of voice and data they are now fighting back with clever strategies. I have listed some strategies that has been my experience and of some of the people I know. Please feel free to add yours via the comments section.

  1. Apparently, operators lose quite a lot of money when people call customer services. As one of my colleagues put it, operators profit for a month is wiped out when someone makes a call to their customer services and asks to speak to a representative. So this option of speaking to a representative is now buried three or four levels deep and you are offered an option of posting your query via the website and also you are asked to make sure you have seen the FAQ before doing this.
  2. Some operators used to have 24/7 customer services for personal users which have now gone and has been replaced by 12/6.5 or 14/6 services.
  3. The option to call free to customer services has in some cases been replaced by a flat fee of 10p or 25p to discourage the callers.
  4. Once upon a time, people used to get bundles that allowed inclusive minutes to landlines and same network mobiles. That was changed to ‘any network any time’. Now the calls to the same network (which costs really nothing to the operators) are coming back in disguise. You get a bundle of free minutes ‘any network any time’ plus ‘extra’ N hundred minutes to people on the same network. This encourages closed group of people to move to the same network.
  5. Another one is that if you have a contract phone for over six months then you can get another one for half the price as long as you have one contract on your name. What this does is that you have one for six months in an 18 months contract then you get another one which costs you half and that is for 18 months contract as well. After another 12 months, if you don’t renew the first contract then you have to pay full amount for the second contract which would defeat the purpose of getting half price contract. So you renew the first one and the cycle goes on and on.
  6. The same as in above case but with Mobile broadband. Some operators offering you free or cheap mobile broadband are generally using you as guinea pig; check their review before buying into them.
  7. Earlier the inclusive minutes on the bundle were billed by seconds. So if you had 500 minutes, it effectively meant 500 x 60 seconds. You could use them the way you want in any small amounts you want. The new bundles are in minutes (read the fine print ;) so they are effectively just 500 minutes. Even if you call someone for 5 seconds, you have spent 1 minute. Vodafone and ‘3’ in UK have also been forcing their existing contract customers who were on the old style bundles to move them into partial new style bundles. What they are saying is that for the first 60 seconds you will be billed for a minute but then after 60 seconds, they are billed by seconds. So to get the best out of your existing contract you will have to make sure that your call lasts for long time.
  8. It used to be free to pickup voicemails by some operators but that is no longer the case and you are billed for atleast 1 minute.
  9. More and more bundles are coming with extra SMS’s which generally costs nothing to the operators.
  10. Some new packages have extra video call minutes and MMS’s thrown in which makes it look great but how many people actually use them?
  11. Every operator has now started abusing the term ‘unlimited’. Never trust anyone offering anything ‘unlimited’. They all have a fair usage policy stuck in the terms and conditions. For unlimited broadband the fair usage policy is around 1-5GB depending on the operator and for unlimited SMS’s the fair usage policy is generally upto 100 texts a day.
  12. Always preserve your original ‘terms and conditions’ copy. The operator can suddenly change them on their website but for your contract the originals would be valid unless the operator sends you a specific mail informing about the change. Sometimes a sudden change in terms and conditions by operators will allow you to walk out of your contract free of any commitments.
  13. Finally there is Femtocells strategy. I agree they haven’t really been launched but this is the strategy marketers been working on to sell them. Get a Femtocell and get cheap calls and SMS. When on Femtocell your bundle increases by 5 times. So if you spend 5 minutes calling someone when camped on Femtocell then you will only be charged for a minute. What more, upto 4 people can use a Femtocell at any time for calls or data services. If you get 2 mobiles on a 24 month contract then the Femtocell is free of charge.

Remember the operators hire very clever billing strategy consultants to keep ahead of the game so always doubt a deal which seems too good to be true. There is no such thing as free lunch :)

Sunday, 5 October 2008

Customer service is the key, Location Based Services will grow

Back in The Day, before the Internet and deregulation the phone companies understood customer service. With the current experience I have with some of other people whom I know I do believe that the customer services ahs gone down.

Let me give you an ugly first-person example. Two years ago, a friend on mine moved from a townhouse into a house, literally "across the street with a similar post code. He had two phone lines to move and his nightmare with the phone company to move phone service started on a Friday and went through the weekend. That weekend was full of promises and excuses to send techs out for "installing" service on a known-good phone line, before he finally got a hold of a supervisor on Monday to turn on the one line - no installer necessary; it would have taken two to three weeks to reschedule, since he had been bumped out of the queue due to no fault of his own. So another TWO WEEKS before he could get the second line up and running. And he still had to pay charges for "installing" the line.

Two years later and nothing has changed in terms of services by these phone and ISP companies.

Customer service matters and it influences existing business and future sales.
This is where most of the mobile companies these days trying to win the battle with the traditional phone companies. I have experiences people moving away from the traditional landlines and ISP’s with the good deal on their mobile with the mobile broadband together with amazing applications to go with the deal. The mantra of being "all about the customer" is definitely the key for the mobile operators and vendors. When it comes to delivering entertainment content and other applications such as GPS etc, the deal with the mobile phone companies definitely fits into the vision of the customers.

In the past few months we have already seen the deals where you can download songs and listen to them on your mobile just like an MP3 player. Continuing into this direction the operators and vendors have started showing signs of flexing their muscles in another interesting area i.e. LBS applications. There is no doubt in my mind that any location based services will have future and it definitely interests the customers.

Companies like Vodafone, O2 and AT&T have already hinted in the direction of launching LBS applications for their customers.

AT&T will launch navigation applications using LBS in first quarter 2008. Location, location, location is the key to win new customers and AT&T Inc went into this direction by announcing the deployment of assisted GPS technology (A-GPS) within its wireless network to enhance existing and planned location-based services (LBS) used with A-GPS capable devices. AT&T deployed assisted GPS technology throughout its network, paving the way for more enhanced location-based services. The carrier, which initially deployed a cell-site triangulation technology to meet the 2006 FCC E-911 requirements, has now added GPS to its technology portfolio.
AT&T also announced recently that it will launch two new navigation applications in the coming weeks, MapQuest Navigator and AAA Mobile navigator. In addition, the operator hinted that it would soon be expanding into other LBS categories including location-enabled social networking and a family-oriented service along with privacy controls.

The above developments clearly is the sign of providing superior navigation tools to the customers and thus giving them more choice.

A-GPS technology gives capable devices a significant jump-start on identifying the user’s initial location. GPS devices search satellites each time they are turned on to determine starting latitude and longitude, a process that previously took as long as several minutes. With A-GPS, the operator’s network speeds up that query by identifying nearby cell sites, helping the device more quickly hone in on the appropriate satellites. Assisted in this way, A-GPS capable devices can identify a user’s initial location in fewer than 20 seconds, delivering greater convenience to customers using LBS.

Continuing in the direction of providing enhance customer services the telecomm companies are now providing new downloadable applications that give its customers more ways to use compatible mobile phones as navigation devices.
I absolutely believe and I think most of you would agree with me that using a mobile phone for navigation is affordable, convenient and intuitive because it eliminates the need for consumers to buy or carry yet another gadget. And unlike traditional navigation devices, which can be hard to transport from car to car or difficult to use while walking or riding a bike, a mobile phone is always on hand or in hand.
Most of the time I have seen people with their car broken down and hence calling for the road side assistance.
The first question which is being asked to the customer is about their current location. With the use of A-GPS through their mobile, customers can now send GPS location directly to a roadside assistance operator.

Applications such as MapQuest Navigator, powered by Telmap, gives customers access to turn-by-turn, voice-guided driving and walking directions, 3-D moving maps, 16 million points of interest from MapQuest’s database, quick route recalculation for missed turns, real-time traffic alerts, gas prices, gas station locations and City’s Best restaurant and venue ratings.
The above services have been highly successful since their rollout, and LBS has ranked among the fastest-growing categories of applications especially for the mobile operators.

Together with the above services customers with the help of navigator can now get the turn-by-turn driving directions, full-color moving maps, a fuel finder feature that lets customers identify the cheapest nearby gas and access to YELLOWPAGES.COM’s database of millions of business locations.

Telecomm companies can see the potential in A-GPS and hence it paves the way for new offers from the operators in the LBS space, which include plans for a family-oriented service and a location-enabled social networking service. Dating and social networking service surely is a bit hit the youths and thus new source of revenue generation.

Future network enhancements will also allow users of non-GPS devices to enjoy location-based services such as local search tools from YELLOWPAGES.COM.

Clearly all the above services sound good but then everything comes at a price. These days’ teenagers having the mobile device with the A-GPS technology can access to some unwanted materials. It is thus very important for the vendors and operators to continue to build out a comprehensive suite of parental and privacy controls. For example, AT&T is developing best-in-class tools to enable parents to manage how their children can share their location. For services sold by AT&T, the tools can be applied on a phone-by-phone and application-by-application basis and will launch alongside the first applications enabling users to share their location with others.

The growth for the A-GPS is very promising which is further supported by MapQuest when it announced the beta launch of MapQuest 4 Mobile, a free, downloadable application that extends MapQuest.com capabilities to compatible BlackBerry smartphones. MapQuest 4 Mobile offers users an easy-to-use interface and the same accurate directions and maps they rely on from the MapQuest.com site. Local search is also accessible, enabling users to search for businesses by proper name or category. Additionally, MapQuest 4 Mobile provides hybrid imagery, traffic and incident information as well as a GPS "find me" feature which locates a user and tracks the progress to their destination. MapQuest 4 Mobile also utilizes smaller map tiles allowing for faster downloads and quicker screen refresh. Smartphones are growing at a record pace and this an important market segment to address as more users rely on their phones for maps and directions. MapQuest 4 Mobile is a step in that direction for providing next generation services to customers that mirrors the intuitive interface and simplicity. MapQuest 4 Mobile is the latest addition to MapQuest's suite of mobile products which include voice-guided navigation from MapQuest Navigator. The newest mobile product continues MapQuest's on-going mission of providing mobile services that help consumers get to where they need to go, anytime, anywhere. MapQuest 4 Mobile can be downloaded from a mobile browser at m.mq4m.com. For additional information about MapQuest 4 Mobile please visit www.mapquest.com/mq4m.

It is really exciting to use all these services and I must admit that having them is like a new toy which always keeps you interested.

Thursday, 2 October 2008

Next Generation GPS Mobile Applications

While attending some seminars, which I cannot give more information about, I heard about exciting NextGen-GPS mobile applications being developed by various companies. GPS is going to make our life very simple (and maybe our brains lazy) .

Imagine the following scenarios:
  • You are going from place A to B and someone asks you to drop something where he is (place C) then he can just send you an G-SMS (Its a name defined by me but please feel free to use it) to his GPS mobile. Your phone will ask you if you want this is 'final detination' or 'via destination' or you want to do something else (store, ignore, etc). You can set this as 'via destination' and your original destination remains unaffected.
  • You are supposed to visit a particular shop in the city and the area is quite big. Your girlfried goes regularly so you give her the remote-control of your GPS and she can point the area (final destination) where you should be going.
  • You are going to watch some match in a particular stadium and around that place there are say 4 car parks. You can select your destination based on 'number of free spaces in a car park' or 'cheapest car park' or 'most secure car park'. You will automatically be routed to the car park based on your criteria. If you have a live update on then this information will be dynamically updated till you reach your final destination. If there are far more parking places then the cars then these car parks can bid for your custom and this will be handles by the GPS transparently.
  • You are a member of car sharing organisation. Whenever you need a car, you press a button on your car sharing application and it immediately tells you how far is the nearest car available and gives you an option of different cars which you can select in an area. You select one of the cars and press reserve and then walk to it. I remember hearing of something similar put PC based and that would (I suppose) have lots of limitations as you have to book it in advance and you have to know your location when you require the car, etc. With this GPS based approach you can be anywhere and you can see real-time information.

There are many more interesting things being developed but they are all conceptual at the moment. I am not sure when they will come to the market. I suppose IMS will be one thing that will be required for these kinds of applications. Whenever they are available, they are surely going to make our like far simple.

Monday, 29 September 2008

SIM-free option for LTE

Dean Bubley, in a post in Seeking Alpha has proposed a SIM-free option for LTE. I have heard this being discussed before in some forums but have not seen yet any concrete steps by 3G to address this issue.

Let me be clear that I fully support the SIM based option which gives you convinience to change handsets while keeping the same number and also easily move between different operators by getting Porting codes (PAC codes in UK) but sometimes when you are travelling or in between places the SIM free option allows you to use Pay as you Go services from the device of your choice. So rather than being tied down to the SIM you will be tied down to the device (Laptop or Handset).

If this option is not available it would still be possible by a service provider to provide you a service based on the device IMEI but the extra 'Access technology based' security would not be there. This means that you would be relying completely on the IP security which should generally not be an issue since this is not very different than what you would use in case of accessing web through your workplace or from a cafe. Also since this option requires extra customisation of LTE based technology which is not standardised by standards, service providers may be a bit reluctant to use this approach.

Alternatively, service providers may go for alternative technologies like WiMAX and WiFi. All laptops have WiFi inbuilt and it wont be long before WiMAX option is available. WiMAX dongles may come in handly for times like these. These technologies dont require any SIM cards so it may be simpler for people to use this.

By not providing the SIM-free option for LTE, there may not be much impact from Laptop users who dont care which technology they use as their hardware is generally capable of supporting quite a few options but it may impact the smartphone user market. These smartphone users who have time to kill on the airports or hotels may make use of their time by registering their phone to a local service provider and then making cheap international calls and browsing via their handset. They may not have to worry about hunting for cyber cafes and even if they find one worrying about the spyware, etc trying to grab passwords/pins on the PCs being used.

Over the next year we will have to wait and see if operators or device manufacturers or service providers are going to propose this option and once it is proposed it would be interesting to see how many people oppose it :)

Sunday, 28 September 2008

Evolution Of Bluetooth

Last week I had an opportunity to attend a Short Range Wireless SIG (special interest group) conference organised by Cambridge Wireless. The conference was about Bluetooth technology, where it’s heading and future of Bluetooth. Bluetooth Special Interest Group (SIG) was formed around 10 years ago. Bluetooth SIG is privately held non profit organisation whose main tasks are to publish Bluetooth specifications, administer the qualification program, protect the Bluetooth trademarks and evangelize Bluetooth wireless technology.


The Bluetooth SIG global headquarters are in Bellevue, Washington, USA and has local offices in Hong Kong, Beijing, China, Seoul, Korea, Minato-Ku, Tokyo, Taiwan and Malmo, Sweden
During the presentation in the conference there were discussions on technical and general stuff about short range wireless and hence I learned some amazing things especially about Bluetooth technology and its application in our daily life. Although my expertise and main focus lies in the area of 3GPP technology i.e. HSPA+, LTE etc I occasionally do pay an interest in Bluetooth and other W-Fi technologies. After attending the SIG conference I do know now that there are some amazing things that can be done with Bluetooth other than just using it as a Hands free kit while talking on you mobile. There are already around 2 billion Bluetooth enabled devices in various forms in the market place.

In terms of business there is also an enormous scope to develop customized applications that can work with Bluetooth and UWB (ultra-wide band, ultraband, etc.).

UWB is advanced form of Bluetooth where the MAC/PHY layer is changed to accommodate high data rates.

UWB is a radio technology that can be used at very low energy levels for short-range high-bandwidth communications by using a large portion of the radio spectrum thus enabling higher data rates. UWB communications transmit in a way that doesn't interfere largely with other more traditional 'narrow band' and continuous carrier wave uses in the same frequency band. IEEE 802.15.4a in its draft standard and working group has proposed UWB as an alternative PHY layer.

Low energy Bluetooth is another emerging flavour which will be talked very often in the coming days. Bluetooth low energy is the next generation of wireless standard from the Bluetooth Special Interest Group (SIG) addressing a completely new set of applications but building on the installed base of Bluetooth devices. As the name implies devices based on Bluetooth low energy consumes only a fraction of the power of the classic Bluetooth radio thus allowing small and low cost implementations.

Bluetooth low energy technology is designed with two equally important implementation options:

  • Single-mode (stand-alone) implementation: Targeted at applications requiring low power consumption and small size; typically button cell battery -powered devices, for e.g. sports & fitness equipment and sensor devices
  • Dual-mode implementation - an extension to a classic Bluetooth radio: Targeted at mobile phones and PCs.

Bluetooth low energy is very robust through frequency hopping compared to other similar technologies. It is very secure through optional 128 bit AES encryption.
The significant factor of Bluetooth low energy is its low power consumption which is by very low standby activity, fast connection setup and low overhead in data packets.

Bluetooth low energy technology explores new market opportunities. It is sometimes unbelievable to see where and how Bluetooth low energy technology can be used. One of the most amazing uses of this technology which I came across was when I came to know that a double amputee can walk again using Bluetooth. Marine Lance Cpl. Joshua Bleill (USA Army) lost both his legs above the knees when a bomb exploded under his Humvee while on patrol in Iraq on October 15, 2006. He has 32 pins in his hip and a 6-inch screw holding his pelvis together.




Now, he's starting to walk again with the help of prosthetic legs outfitted with Bluetooth technology more commonly associated with hands-free cell phones.
Bluetooth is definitely evolving and low energy Bluetooth is very much part of its evolution. The technology has a major parto play in our daily lives and the currently the Sports and Health Care is the significant area where the major focus is lying.

Bluetooth Low energy has a major role to play in sports and fitness. I personally has experienced the use of the Bluetooth device when I visit to Gym. I have to put the device around my chest and the machine then displays my heart rate transmitted by the Bluetooth device. This is amazing as I can constantly monitor my heart rate and based on that I can vary the intensity of my workout.

Thus sports person has sensors i.e Bluetooth device located on the body, shoes, garments and other fitness gear measuring the exercise session such as duration, speed, distance, cadence, slope, location, heart rate, energy consumption etc. Together with this information, when using GPS location related information can be combined with the data. Thus using a Bluetooth device is like training with a virtual partner. The use of the application can motivate and give feedback to the user and remote users, e.g. coach, team mate or a virtual partner. They can access the data remotely and then make decisions based on it for example the exercise can be simulated on exercise bike or treadmill along with multimedia content.



Low energy Bluetooth device thus helps play a significant role in sports persons real time activity and training monitoring.

I have seen Golfers using Bluetooth devices to record their swing. Golfers can thus monitor the real time data and thus can improve their swing. Golf player’s motions are recorded with sensor devices and the data is uploaded to a host device. The recorded data or values are transmitted to web service where the athletes can be remotely monitored online or offline by coach, audience, etc.

Health care is another major area where low energy Bluetooth devices have a significant role to play. There is a potentially market of greater than US$1 Billion for wireless health monitoring products. Examples of currently available medical devices using “Classic” Bluetooth technology are:

  • ECG Monitors
  • Cardiac Defibrillators
  • Blood Glucose Meters
  • Insulin Pumps
  • Pulse Oximeters
  • Blood pressure Monitors
  • Weight Scales

Examples of healthcare devices suited to Bluetooth low energy technology, requiring very low power and long battery life are:

  • Thermometer
  • Blood pressure monitor
  • Weight Scale
  • Heart Rate Monitor
  • PERS
  • Blood Glucose Meter

Let’s consider the example of how the technology can help in the case of Diabetes management. The patient will be fitted with a small low energy Bluetooth device i.e. Blood Glucose meters typically powered by small coin batteries, operating for a year or more. Blood glucose measurement, data is automatically sent to the mobile phone and to the central Personal Health Record. Patient and care providers automatically alerted if the sugar level is outside preset limits and reminders and advice can be sent back to the patient and test compliance can be monitored.

Low energy Bluetooth devices can used in the consumer electrnics control as shownin the picture below.


I must say I was really impressed to finds out how the Bluetooth technology can be used in our daily life. Just by using a simple and small device many patients life can be saved as they are monitored constantly.

Tuesday, 23 September 2008

NEC and Ubiquisys to help deploy first IMS based Femtocell Solution

Japanese operator SoftBank is to score a world first in January, when it becomes the first service provider to launch 3G femtocells in a commercial capacity.

SoftBank, Japan's third placed carrier behind NTT DoCoMo and KDDI, said it will offer 3G femtos from January 2009 using kit from UK-based Ubiquisys and a supporting IMS core from NEC.

According to Unstrung:

Japan's Softbank Mobile Corp. is still trying to get the national regulator to change a quirky policy that could thwart its plan for a large-scale femtocell deployment, according to an industry source. In Japan, only a qualified engineer can install a base station, and that rule applies to the small, low-power base stations, too.

Femtocells are supposed to be "zero touch" and easily installed by the users themselves. So, a regulation that mandates sending out an engineer to plug in each and every home access point would kill an operator's femto business case.

The Japanese policy is expected to be changed by the end of the year, which wouldn’t be too soon for Softbank. According to our source, the operator has already installed 20,000 devices, has chosen an NEC Corp. solution -- which uses Ubiquisys Ltd's femtocell -- and is also checking out equipment from Huawei Technologies Co. Ltd. Softbank isn't quite ready for a mass market deployment because there are still some technical issues, according to the industry source.

Meantime, NTT DoCoMo Inc. said last week that it was going to use the new HSPA version of Mitsubishi Corp. femtocell for its Home Area service.

There have been couple of so called Femtocell launches already namely T-Mobile Hotspot@ and Sprints CDMA Femtocell but they are not really Femtocells because they just provide an extension for voice services and no other type of services.

The Femtocells are called ZAPs (Zonegate Access Points) and Japanese customers will be able to get their hands on them from Jan 2009.

Monday, 22 September 2008

LTE may be not that far, T-Mobile tested LTE

In his recent blog Zahid wrote that LTE is still far away. Well I had the similar feeling as I read the similar article saying that LTE is still far away.

But just when you thought Long Term Evolution (LTE) technology was a dream of the future, T-Mobile comes along and yanks it into the present.

T-Mobile claimed that it has become the first carrier to successfully test LTE technology in a real-world environment in a test it conducted in Germany in conjunction with Nortel. The two companies were able to transmit data from one moving car to another on opposite sides of the Rhine River, without loss of quality or data, even across different cells.

T-Mobile claims it is the first wireless network operator to demonstrate the 4G technology using LTE. T-Mobile in partnership with Nortel tested LTE under real world conditions and were able to transmit data to and from vehicle driving in Bonn between Deutsche telecoms headquarters on the left side of the river Rhine and T-Mobile headquarters on the river’s right bank.

As mentioned by Raju Shanbhag in his blog the above data transmission test by T-Mobile went smoothly without interruptions and without loss of quality even across different cells on the four kilometre test track area.

This test of LTE data transmission across the cell is quite significant when considering the fact that the mobility is the basis of the mobile communication.

Although in some articles one do get the feeling that LTE might still be far away but the above development certainly tells the different story.

The world's largest mobile operator in terms of subscribers, China Mobile, is defnitely seems to be keeping an eye on these developments and hence it is eager to begin testing 4G TD-LTE soon, a time division duplex (TDD) version of LTE that will be backward compatible with the struggling Chinese 3G standard TD-SCDMA.

Mobile industry is certainly pushing the LTE and trying to ensure that LTE should not be delayed. The news of successful LTE test conducted by T-Mobile is one step further in this direction.

According to a new study from ABI Research there will be more than 32 million LTE customers by 2013. Around a third of these will be in Asia-Pacific with the remainder split about 60-40 per cent between Western Europe and North America. It would appear that the mobile industry is once again doing what it does best, overhyping new technology whilst it is still in development. Announcements about LTE arrive almost daily, each more positive than the next. U.S. CDMA operator Verizon Wireless announces its intention to migrate its network to LTE, Nortel and Motorola announce plans to focus on LTE, perhaps at the expense of WiMAX and so it goes on. Only time will tell whether the hype is justified or if the mobile industry is about to get another dash of cold reality.

Android: Dream(s) OS.

Back in Feb, I blogged about Google's Android that was being shown off in MWC 08. Now its turned up in Dream. By that I mean HTC dream.
People are anxious to get their hands on the phone and are waiting for it to be launched in UK so they can do some more analysis on that. For the time being its going to be available only in the USA. Its going to be launched tomorrow.
Honestly, I dont know much about phones OS's and I havent cared much about them till date. The only time I start looking at the features, etc. is when I am looking for a new phone. Android is promising to be a bit different and first truly open OS which can revolutionise the world of Apps. As you can see from the leaked picture, its a QWERTY phone so I have my interests in it ;)One can argue that the world of Apps have already been revolutionised by the iPhone, which is true but what lacks with the iPhone is the freedom to compete with Apple itself. The following is from PC world blogs:

Apple has officially kicked two popular apps out of its App Store over the past days. Podcaster, a program that lets you circumvent iTunes to directly download podcasts, found out it was getting the "REJECTED" stamp just before the weekend. Now, the makers of the popular tethering tool NetShare are sharing a similar plight. NetShare disappeared without notice in August. Its creators now say they've finally been told they too are banned for good.

This, I am sure, would be welcome news for Google as it will be billing its OS as truly democratic OS. Gizmodo have given 5 reasons to like (and not like) Android:



Reasons to like Android:
  1. Its open
  2. Will accelerate the process of gradual devolution of carriers to open, dumb pipes.
  3. You'll have tons of hardware options
  4. Opportunity to create any apps you like
  5. Best Google Apps experience on any mobie device

Reasons to dislike Android:

  1. Google can keep more track of you
  2. It's not on the US's two biggest carriers, AT&T or Verizon (I dont care about this one)
  3. Carriers can put their own App stores on the phone
  4. There wont be a consistent Android experience because anybody can put it on any hardware with many other apps combination
  5. Too many apps and features can cause confusion


The HTC Dream is also known as G1 (Generation 1?). There are already rumors about the second generation Android phones circulating:

The second-generation Android phone will be manufactured directly by Google instead of third-party manufacturers. With the help of a Google engineer, we were able to descend to the forty-second sub-basement in the Googleplex to their hardware labs for an unauthorized sneak peek.

The phone will harness the computing power of every Google datacenter in a single handset. It'll be like having the brain the size of an entire planet in your hand," said one Google engineer who wished to remain anonymous.

One issue designers have been facing is to find enough for the phone to do so it doesn't get bored. "We have it compiling kernels, factoring primes and monitoring calls for the NSA, but after about thirty minutes of doing that the phone lets out an audible yawn and shuts itself off," said our source.

The phone is unsurprisingly called Gphone. Other rumors include Google's design to take over the enterprise market since more and more people are moving away from Laptops to Smart Phones.

Unofficial Pics of LG's KC910 has also surfaced. The phone is also rumored to contain Android. Some people are even suggesting Sony Ericsson is going to launch Xperia with Android.

The prediction right now is that Android will capture 4% of market share in Q4 which is around 400,000 of the 10.5 million overall smartphones. If Android delivers the trademark Google quality, the figure may be higher.

Saturday, 20 September 2008

Embedded 3G wireless technology on the up

With the emergence of technologies like HSPA, HSPA+ and LTE the laptop technology has been on the up. Laptop with the embedded modems is becoming popular. This doesn’t surprise me at all as I myself have used laptop with the built in mode. I had to just put the SIM and connect to the network using the connection manager on the laptop. As soon as I started browsing the network moved me onto HSDPA (HSPA+ in near future). As you can imagine the user experience is amazing as one can browse on the laptop while on the move that too with high speed.

In order to provide this facility Intel and Quallcom is really working hard to come out with the chipset which can provide good support for 3G technology.

Quallcom can see the potential in wireless broadband and hence came out with a Gobi chipset to support the 3G embedded technologies in the laptops. Although the initial response for the chipset was not very encouraging, the chipset is now getting support from operators like Vodafone and At&T together with the laptop vendors.



Recently a new report from the research firm, Senza Fili Consulting, says that by 2014, vertical market applications will use more than 154 million connections on 3G, WiMAX or LTE networks, generating more than $43 billion in service revenues, and that vertical services will reach 24 percent of WiMAX subscriptions and 14 percent of LTE subscriptions. While the enterprise market is a potentially lucrative one, however, it is challenging to serve, and operators will need to prepare well to give these customers the attention and performance they will demand, the firm cautions.

The above report thus further increased the interests towards Gobi chipset. Recently the support for the chipset has definitely increased and Qualcomm just received more support for its Gobi embedded laptop chipset by At&T. AT&T has certified the technology to be used on its HSPA network along with two of Panasonic's Gobi-enabled rugged notebooks.
In addition, HP's refreshed line of notebooks, which have built-in Gobi technology, are also certified for AT&T's network.

On the CDMA front, two of Panasonic's Gobi-enabled laptops received certification from Verizon Wireless for use on its EV-DO network.

Gobi allows users to switch seamlessly between 3G networks around the world, including GSM, EDGE, HSPA, and EV-DO. Vodafone, which operates an HSPA network in Europe, has backed the project, complementing partner Verizon's U.S.-based EV-DO network.

One of the keys to Gobi's innovative design is that it standardizes API, and allows developers to develop a potentially endless variety of applications that sit above the card firmware, while providing no problem with certification.

HSDPA and EVDO networks have now been widely deployed globally. As with initial 3G launches these networks are first being used to deliver wireless broadband via data cards. Yet unlike previous technologies, the technologies are providing a user experience which lives up to the marketing. These services are mobilising workers with speedy connection to a VPN, email, applications and the Internet. Over the past 12 months the vendors and operators have devised the strategies to market 3G wireless broadband to laptops and thus slowly moving away from the initial data cards methods. Users obviously prefers laptops with the embedded 3G wireless technology as it is easy to operated and gives better experience. Operators like Vodafone and Orange for this has already launched business bundle comprising of laptops, embedded with SIM cards which is aimed at small and medium size businesses.

Thursday, 18 September 2008

Consensus on LTE Femtocell Layer as starting point

Many people in our industry are now of the opinion that the best way forward with LTE is to roll them out as Femtocells and then when more and more people start using them, then start deploying LTE Microcells/Macrocells.


There is this news in Gigaom:


Will personal cell towers replace the giant monstrosities currently sitting on rooftops and beside highways? Manish Singh, a VP with Continuous Computing, says that may be the case with the 4G buildout. He spoke with me about the company’s new line of software and hardware for carriers deploying LTE networks, noting that those in North America and Europe are asking whether they should deploy citywide — or one consumer at a time, using femtocells.

He said two things are driving this, one being the huge capital expenditure associated with building out a wireless network and the second being the length of time it has taken for widespread use of the 3G data networks. Verizon started deploying its EVDO networks in 2003, but only in the last few months — thanks to better pricing and the iPhone — has 3G data been used by many customers. When it comes to 4G provided by LTE, a controlled femtocell deployment ensures that customers could get LTE speeds of up to 150 Mbps (in theory) while at home or in coffee shops and use the existing 3G network while out and about.

The femtocell strategy will be used in another 4G rollout — this time for WiMAX — as part of the Clearwire joint venture involving Clearwire, Sprint, Google and several cable companies.


And there was this other news in Electronics Weekly by CTO of PicoChip:


Approximately 60% of mobile usage already takes place indoors, yet providing in-building coverage is a technical problem at the gigahertz frequencies used for Wimax and LTE. This is only set to get worse as the mobile continues to replace the home phone. Research indicates that, as “all you can eat” data packages become commonplace, this number is likely to reach 75% by 2011.

As transmission frequency increases, in-building penetration degrades. The additional attenuation reduces throughput for those users indoors, but there is another effect too: if the traditional macrocell allocates more power to reach the indoor user, this increases the interference for other users. Such realities inevitably have a quantifiable, negative impact on cell capacity, making it impossible to deliver 10 times the performance of 3G that is a fundamental requirement of the 4G vision.

Furthermore, the large cell approach is fundamentally less able to provide the benefits for which LTE was intended. As Cooper’s Law identifies, the best way to increase traffic density is via smaller cell sizes. A macrocell gets hit twice in this respect – it has poorer total throughput due to RF conditions and it has to spread that throughput over a much wider area.

Most operators considering the roll-out of LTE already have widespread HSPA networks. If terminal devices are going to be multimode (LTE and HSPA and GSM, for example), there is little point in deploying LTE everywhere and ensuring ubiquitous coverage, since the user experience may be no better than that provided by HSPA (or could be worse). The capital expenditure of a small cell approach need not be prohibitive. Indeed, substantial savings will be available on the back of the technological innovations that are driving down the bill of materials costs for residential femtocells.

A small cell approach also has cost implications for operating expenditure. These networks need to incorporate self-optimising technology to eliminate manual configuration during deployment and throughout the life of the equipment. These self-optimising networks (SONs) will, for instance, dynamically optimise radio network performance in use and provide intelligent backhaul capabilities. Operators are already recognising these requirements and mandating the provision of SONs; the emerging residential femtocell in WCDMA is proving this capability now.

This network architecture change will produce corresponding changes throughout the infrastructure value chain. The network equipment industry will move towards a consumer market approach – in a manner similar to the use of “commercial off-the-shelf” (COTS) technologies in the military equipment market, infrastructure manufacturers can borrow from femtocell innovations to benefit from consumer electronics economics. This will place an onus on IC suppliers to offer unprecedented levels of systems-level expertise and support.


The traditional macrocell approach will flounder at the next stage of network evolution: they are too expensive a solution and do not deliver the required results.


Last month in a blog, I mentioned that the Femtocell issue is becoming urgent because of the Release 8 freeze date in December. Othmar Kyas from Textronix argues the same thing in a different way in Total Telecom:

Currently, 3G femto access points, which are the WLAN-like devices residing at customer premises, are connected to so-called femto gateways via the customers' private DSL links using largely proprietary protocols to provide femto-specific functionalities such as plug and play, self-organising features, guest user management, roaming or charging. The femto gateway, which can connect to thousands of femto access points, translates the femto communication links to the "Iu" interface, which is the standard connection between a 3G core and a 3G access network.

In order to resolve resulting compatibility and interworking issues, 3GPP, the standardisation body behind the GSM family of technologies, has nominated this issue as a study item in the upcoming version of its standard, 3GPP Release 8.

Release 8 is also the first version of the 3GPP standard that contains the long awaited fourth-generation (4G) GSM variant LTE (Long-Term Evolution). Femto aspects in this study cover both 3G (UMTS) and 4G (LTE) infrastructures. 3GPP Release 8 describes the femto architecture in an official standard document for the first time. It introduces the concept of home base stations for 3G and 4G using the nomenclature Home Node B (HNB) and Home eNodeB (HeNB). Additionally, it defines a new interface capable of directly connecting home base stations to 3G and 4G core networks, the 'IuH' interface.

According to the 3GPP specification, all home base stations in the future will have to provide the following functionality:

• HNB and HeNB deployed as small UTRA and EUTRAN cells, respectively, in domestic, small office and similar environments.

• The HNB and HeNB interconnects with the 3G core and Evolved Packet Core, respectively, over a fixed broadband access network (e.g. DSL, cable, etc.).

• Support for full mobility into and out of a HeNB coverage including service continuity where applicable.

• Operators and owners of HeNB and HNB will be able to control access to the resources provided.

The full specification for HNBs, HeNBs and IuH will become available with Release 9 of the 3GPP standard, which probably will not publish before the beginning of 2010. (Release 8 is scheduled to freeze in December 2008 and to publish in early 2009).

The second challenge that needs to be overcome before the 'femto dream' can materialise is the cost of the femto hardware. To be successful in the competitive consumer market, femto access points probably need to sell below US$200. Current chip-set prices for 3G femto base stations still range significantly above $100, indicating that there is still substantial work needed in terms of manufacturing cost reduction.

Will the lack of standardisation or the hardware cost hinder the success of femto? Have equipment manufacturers and operators learned the expensive 3G-lesson? Will the femto equipment be as plug-and-play and as interoperable as claimed? Will the performance live up to the high customer expectations?

Finally, there will need to be attractive tariffs or flat-rate payment plan offers from operators to kick start a 3G business that reaches far beyond early adopters and business users but actually grabs a mass market.

Kick-starting the LTE technology as Femtocells may have its own advantage and will help iron out the initial problems which are bound to cause hiccups otherwise. Yesterday I mentioned that LTE may be far away but it can be rolled out earlier if this approach is taken. As it was mentioned earlier, 60% of the people access data from their homes, LTE based Femtocells may be what may turn this figure into 90%+. What is needed now would be some killer applications ;)

Wednesday, 17 September 2008

LTE still far far away

FierceWireless has a relaistic analysis of LTE on their website:

The adoption of 4G wireless and Long Term Evolution (LTE) network technology is a long way off and will probably not be adopted on a large scale by network operators until around 2015, according to the host and panel participants at Andrew Seybold's Wireless University, a co-located conference held in conjunction with the CTIA Wireless IT & Entertainment conference in San Francisco.

If LTE technology does come online, Seybold said, it will be at hotspots where there is an incredibly high demand for data, pointing out repeatedly that for carriers voice services still pay the bills and data does not.

Though LTE may provide 30 percent to 40 percent greater network efficiency in a 10 MHz spectrum over HSPA and EV-DO technology, Lawrence questioned whether or not that was sufficiently efficient to justify a multi-billion dollar investment in an entirely new network when 3G technology is just hitting its stride.

Even though this article does not paint a very rosy picture, I think its prediction is more on the conservative side. In earlier posts there is a mention of 32 million users by 2013 and even nationwide (USA) rollout by 2014, but they are not far off from this analysis. Considering that there are already over 3 Billion users expected to become 4 Billion by 2012, 32 million is not a very big number. There could be even more than that even in the hotspots.

The main thing that needs to happen now is for some operator to take the 'giant leap' of moving to LTE once its available. NttDoCoMo would definitely do that but is there anyone else willing to do the same?