Saturday, 28 June 2008

Future Tech Home of 2013 (after LTE of course ;)

Got this one in a mail from The Standard:

It's 2013, and you've just come home from work. As you pull into the driveway, you reach into your pocket and swipe the screen of your smartphone with your thumb. Your garage door opens and the lights in your house turn on. The TV queues up the shows you missed while you were working late. Your favorite songs are following you from the living room to the kitchen. Then you stop. The phone blinks and warbles at you. The fridge says you forgot the milk.

It's the HD/wireless/automated/streaming/sych'd/ready-to-entertain house of the future, and you're living in it.

Welcome home.


Sit back, strap on your sense of imagination, and get ready to step into the digital home of 2013. Here are ten technologies that will make our life complicated ... I mean simpler:

High-speed telecommunications: In 2013, you can forget about the cable guy running coax cable through your home or your Wi-Fi signal petering out in the master bedroom. By then, you'll have high-speed Internet access anywhere you go, regardless of whether you're chillin' on the deck out back or surfing upstairs in your pajamas. Constant access to the Internet will be provided by technologies like WiMAX and 4G.

It's an HD world: What's better than sitting on the couch in the family room while stuffing your mouth with popcorn as you watch the latest episode of Battlestar Galactica on your new 50-inch HDTV? Nothing? Well, what if you could live in a home where HD isn't found in just the living room, but all over the place? Now that is what I call living!

Gaming gets real: The digital home in 2013 will see a new breed of consoles that go beyond the Xbox 360/PS3/Wii experience. And although some say that game graphics have little room for improvement, the consoles being fired up in living rooms of the future will certainly feature titles that are far more life-like than ever imagined. As graphics approach photorealism, PC gaming could feel the greatest impact of all.

Reach out and touch something: Touching is fun. It's really fun to touch gadgets, and navigate user interfaces using your fingers. And while you're walking through your digital home in 2013, you'll be doing a lot of touching all the time.

Automated home control: The digital home in 2013 will provide residents with exciting new ways to control their houses, devices, and appliances, while saving energy. And who isn't happy about helping out ol' Mother Earth?

Green goes mainstream: The green trend is undeniable. More and more high-tech companies are becoming aware of their collective obligation to the environment. Right now, companies including Dell, Apple, and HP provide safe recycling of computers, while small manufacturers like Green Machine Shop in Michigan are promising more environmentally friendly computing gear.

Welcome to the cloud: As broadband penetration expands, the idea of accessing data storage, software, and even extra processing power is becoming more attractive. And if you play your cards right, your digital home in 2013 will not only be free from clutter, but it might be in a serious relationship with the Web.

The rise of streaming media: Although Blu-ray seems like the ultimate in futuristic home technologies right now, it will look like a dinosaur by 2013. By that time, streaming content from the Internet and from room to room will be relatively commonplace, and the idea of spinning a plastic disc to watch a movie will seem positively archaic.

Online distribution of TV, movies: In the digital home of 2013, the Internet will help you access libraries of content that go far beyond what Netflix or Wal-Mart offer in their DVD catalogs. Furthermore, on-demand Internet delivery will allow viewers to turn away from prescheduled TV programs. You'll be able to watch what you want, whenever you want.

Collaborating across town, and across the world: Collaborating via email is, well, outdated. In the future, you won't need to wait for an email with an updated file attachment, and you certainly won't need to send off documents through FedEx. Instead, you will be using services like Google Docs to share documents in real-time, and using next-generation conferencing and messaging services to collaborate. Sharing is the key to the future, and as your mother once told you, sharing is good for you.

You can get all the details by following this link.

And by the way, if you want to find out how the world will look in 2032, see this earlier blog.

Sunday, 22 June 2008

New Fad: "SMS with Attachments"

The press release said: New ''SMS with Attachments'' Service Used by 18 Million Mobile Subscribers in China. SMS with atthments? Isnt this what MMS stands for. Maybe people are reluctant to try new Mobile Applications. Anyway, here is the press release summary:

First you get the text message. And then the phone rings, playing back a multimedia joke message sent by one of your friends. It's funny enough that you want to share it with others. It's called SMS (text) messaging with attachments, and it is the latest revenue-generating service built using Open Access(TM) media processing boards from telecommunications services platform provider NMS Communications. The SMS with attachments service, developed by value-added service provider ChannelSoft, is available to nearly 96 million China Unicom and China Mobile subscribers, and has already been adopted by more than 18 million subscribers to date.

SMS with attachments allows users to send external multimedia content to friends and family. Callers can subscribe to the service and select attachments such as music, ringback tones, jokes, other audio files and other forms of entertainment that they want to share with friends. The operator will then send the SMS message with the attachment to the recipient, who could then forward the message to other friends. ChannelSoft expects the service to continue to grow, increasing average revenue per user (ARPU), with estimates topping $44 million for 2008.

"While text messaging still enjoys the lion's share of mobile messaging revenues, operators are expanding their menus to give subscribers more options that will, in turn, drive revenues," said Jamie Warter, vice president of marketing at NMS Communications. "SMS with attachments is another great example of a creative service developed by an innovative company like ChannelSoft using NMS Open Access media processing boards."

Now you may soon hear about Phone Call with Picture (a.k.a. Video calling ;)

Saturday, 21 June 2008

Life has become busy

Couple of days back Ravi sent me a mail asking why I have not been blogging regularly recently and have in fact received many queries on my 3G4G website as to when I would be updating it.

There is no simple answer to these questions as at present I am extremely busy and finding it very difficult to update the site. This was the main reason I started blogging as its far less time consuming then the website. As for now, I cant see getting some good time slot till the year end to do both these tasks so please bear with me.

Kyocera's iBurst-Based Technology Approved as New Standard for IEEE 802.20


17/06/08: Kyocera Corporation announced that Kyocera’s iBurst-based technology proposal (625k-MC mode) was approved as a new standard for IEEE 802.20 by the IEEE Standards Association at its headquarters, Piscataway, New Jersey, USA on June 12, 2008.

“Having been a draft standard since January 2006, Kyocera is gratified that iBurst has finally been approved as an 802.20 standard by the IEEE Standards Association,” said Mr. Masashi Yano, General Manager of the Corporate Communication System Equipment Division, Kyocera Corporation. “With this industry standard approval, we are expecting to expand the iBurst service area to more and more countries.”

Kyocera’s iBurst, or HC-SDMA, is a mobile broadband wireless access (MBWA) system that has been commercially rolled out in more than 10 countries and has been approved as a standard by American National Standards Institute (ANSI) and International Telecommunication Union Radiocommunication Sector ( ITU-R). iBurst has remarkably high capacity, essential for mobile broadband wireless access services, and distributes its high data rates to many mobile PC users. This is enabled by field-proven Adaptive Array Antenna (AAA) and Spatial Division Multiple Access (SDMA) technologies.

iBurst operators worldwide have formed the iBurst Association (iBA), a not-for-profit organization advocating the promotion and development of iBurst technology as a preferred MBWA solution.

IEEE 802.20 is also known as MobileFi and I have written a blog on it earlier this year.

MobileFi is more of a compitetor to WiMAX as compared to the 3G+ technologies.

WiMAX is targeted for mobile users moving at speeds of up to 60 mph inside a WiMAX region (laptop users moving across a corporate campus, for example). But 802.20 is focused more on highspeed mobile users traveling acrossan extended metropolitan area at speeds of up to 150 mph (a salesman traveling across a city or an executive traveling between nearby cities on a high-speed train, for example). WiMAX/802.16e also differs from 802.20 in that it supports substantially higher data rates (up to 71 Mbps) than 802.20 (up to 1 Mbps). Another thing is that the cell radius with 802.20 is 15km while with WiMAX is 50km.

Why iBurst? The maain Features of iBurst are:


1. High data rate: iBurst supports Data Rate of 1.061Mbps downlink/ 346Kbps uplink with System capacity 24.4Mbps downlink/ 7.9 Mbps uplink.

2. High Spectral Efficiency: iBurst supports more customers per base station. In 5 MHz Spectrum, 50X over-subscription as compared to 3G system

3. Wide Area coverage: Maximum coverage of iBurst is 12.75km. iBurst uses lower frequency, which is good for non-line-ofsight indoor penetration.

4. Mobility: iBurst supports Mobility of over 100km/h. iBurst also supports Handover between base stations.

5. Easy access to IP network: iBurst is packet based technology

6. VoIP compatibility: QoS is implemented to assure wireless VoIP quality. iBurst has achieved fixed phone level voice quality.

Links:

WiMax and LTE backwards compatibility

Most of you must be hearing on daily basis about the race for 4G and who will reach there first and will claim the victory for the 4G post.

The competition between WiMax and LTE is really blossoming and both the camps never miss any opportunity to find a hole or negative in other. One of the major point of conflict in recent days between the two camps (WiMax and LTE) is the backwards compatibly of the two technologies.
WiMax based on the 802.16 standard could push data transfer speeds up to 1 Gbit/s while maintaining backwards compatibility with existing WiMax radios. Vendor sources, however, have expressed some scepticism about the speed with which the work can be completed (the end of 2009 is being mooted as a baked date) and the chances of maintaining backwards compatibility with mobile 802.16 technology.

What's really provoking the disbelieving chuckles are the requirement for backwards capability between current and future 802.16e offerings and the planned advanced air interface. Such disbelief is not that surprising when you think back to the recent interoperability issues between 802.16d and 802.16e

Around the same time that LTE rolls out, the Institute of Electrical and Electronics Engineers' (IEEE) 802.16m, or WiMAX 2.0, will make its way into products, analysts said. But there is not doubt in one thing though that WiMax is ahead of LTE in terms of technology as of today. Service providers with the right spectrum, available capital and access to enough sites to place base stations are in great position to take advantage of WiMAX's head start on the 4G market. Backwards compatibility is one area where WiMax heads towards a grey area whereas LTE at the same time is supposed to be very much backwards compatible. The network architecture for LTE/SAE already shows interface defined for the handover between LTE and 3G. The debate between WiMAX and LTE has become dirty when it comes to the issue of backwards compatibility.
Speaking exclusively to WiMaxVision from the WiMax Forum's member conference in Hawaii, Siavash Alamouti, CTO of Intel's Mobile Wireless Group, takes issue with a key claim made by proponents of LTE. Alamouti's argued and puts a very big question mark on LTE’s backwards compatibility claims.
Word is already out in the industry that although they welcome 'healthy' technology competition to mobile WiMAX in the so-called '4G'space, a number of misconceptions have been promulgated by some vendors, and even some analysts, about main rival LTE. Some peoples biggest gripe is LTE being perceived in some quarters as backwards compatible with 3GPP standards, from WCDMA through to HSPA+.

One of the reasons why many of the mobile giants decided to be in LTE camp is because of its claims for the backwards compatibility. But a doubt has started creeping in and some industry sources even says that they see no genuine evolution in LTE as LTE requires an entirely new RAN and system architecture to 3G, in much the same way as mobile WiMAX does.
To make an LTE device backwards compatible, you would have to add 3G modules to that device but you could do that with mobile WiMAX or in fact any other technology argues Siavash Alamouti of Intel.

My above claim is supported when I heard that Qualcomm announced in February it was expanding its device and base station chipsets to include LTE along with UMTS and CDMA2000. The chipsets will allow backward compatibility to legacy UMTS and CDMA2000 networks for carriers that deploy LTE. The new family of Qualcomm MDM9xxx-series LTE device chipsets will include:
MDM9200™ chipset designed to support UMTS, HSPA+ and LTE
MDM9800™ chipset designed to support EV-DO Rev. B, UMB and LTE
MDM9600™ chipset designed to support UMTS, HSPA+, EV-DO Rev. B, UMB and LTE

LTE, however, has made standardisation progress with the announcement by 3GPP last month that some RAN specifications have been frozen and are now under change control, but there is still some work to be done before the 3GPP Release 8 specification for LTE is finalised, probably by the end of the year.

Where WiMAX is today in 2008 I think LTE will be in late 2010 and early 2011, which is early stages, ready to deploy, but the equipment not necessarily completely interoperable. As for WiMax I expect we'll see embedded mobile WiMAX laptops coming onto the market between April and June this year.

Tuesday, 17 June 2008

Flatter Architecture from Nokia-Siemens Network

From Unstrung:

In its bid to overtake Ericsson AB and become the world’s top radio access infrastructure supplier in terms of revenue, Nokia Siemens Networks believes its approach to all-IP flat architecture on 3G networks will give it an edge. Nokia Siemens says operators do not have to wait for LTE, to get the benefits of an all-IP architecture, and it is the only vendor that currently champions a flat 3G radio access network (RAN) approach.

As mobile data traffic continues to surge, operators are considering how to adopt flat, all-IP architectures in their 3G networks before the advent of 4G in order to gain lower latency, lower cost per bit, support for multiple access networks, and preparation for next-generation networks. But there are different ways to implement such architectures, and just how operators arrive at a flatter data network architecture is hotly debated.

Nokia Siemens has put its money on a flat RAN approach for high-speed packet access (HSPA) and the coming HSPA+ standard, in addition to its support for the Direct Tunnel architecture.
In a flat RAN architecture, the radio network controller (RNC) is integrated into the Node B so that the base station communicates directly with the Gateway GPRS Support Node (GGSN).
But there are as many benefits as drawbacks to flat 3G RANs, which makes it a controversial approach, according to the recent Heavy Reading report, "Flat IP Architectures in Mobile Networks: From 3G to LTE."


With flat RANs, some of the benefits include lower latency for data applications, lower operational costs due to fewer nodes to maintain and manage, augmented data capacity through a data network overlay, and good preparation for so-called 4G LTE/SAE (System Architecture Evolution), which uses a similar functional architecture. Also, costs won’t grow in line with data traffic growth, because operators won’t have to deploy extra RNC and SGSN capacity as traffic increases.

It may be challenging to integrate the RNC into a Node B. RNCs are critical to supporting macro-diversity in mobile networks, which enables mobile handsets to communicate with multiple base stations on the uplink and allows operators to deploy fewer base stations. NSN’s flat RAN architecture supports this feature, but in an unorthodox way, according to the Heavy Reading report.

So far, Nokia Siemens has three customers using its Internet HSPA (I-HSPA) flat RAN solution: Stelera Wireless and TerreStar Neworks in the U.S. and T-2 in Slovenia. And Mobilkom Austria AG & Co. KG recently trialed the solution.

Nokia Siemens’ Rouanne explains that flat 3G RANs aren’t necessary when there is just “medium” data traffic, but are best suited when operators have big data traffic volumes. “Those networks that are starting to be under pressure with traffic are coming to us and wanting to direct traffic directly to the Internet,” he says.

Even though Nokia Siemens is the only vocal supporter of flat 3G RANs right now, Brown says the strategy isn’t risky, but it’s “forward-looking.”

And a flat 3G RAN can set up an operator to be ready for the shift to LTE with its inherent flat architecture.

According to an old Ericsson presentation, ”Direct Tunnel” support added for 3G payload optimization has the following advantages:
  • Cost efficient scaling for Mobile Broadband deployments
  • Increased flexibility in terms of network topology
  • Allows the SGSN node to be optimized for control plane
  • Specifications part of 3GPP rel-7
  • Designed for operation in legacy (GGSN/UTRAN) networks
  • First step towards the SAE architecture
According to heavy reading article:
To efficiently deliver mobile broadband services, operators require a network infrastructure that simultaneously provides lower costs, lower latency, and greater flexibility. The key to achieving this goal is the adoption of flat, all-IP network architectures. With the shift to flat IP architectures, mobile operators can:
  • Reduce the number of network elements in the data path to lower operations costs and capital expenditure
  • Partially decouple the cost of delivering service from the volume of data transmitted to align infrastructure capabilities with emerging application requirements
  • Minimize system latency and enable applications with a lower tolerance for delay; upcoming latency enhancements on the radio link can also be fully realized
  • Evolve radio access and packet core networks independently of each other to a greater extent than in the past, creating greater flexibility in network planning and deployment
  • Develop a flexible core network that can serve as the basis for service innovation across both mobile and generic IP access networks
  • Create a platform that will enable mobile broadband operators to be competitive, from a price/performance perspective, with wired networks
Note: Diagrams above shamelessly copied from Ericsson's presentation.

Nortel bets on LTE as prediction rises to 32 million by 2013

In a bid to gain head start in the development of technology conforming to LTE (Long Term Evolution) technology standards across the globe, Nortel has withdrawn funds from its in-house research & development for WiMax and diverted the funds to development of LTE-based solutions. The R&D activities for WiMax will be handled by Nortel’s Joint Venture for WiMax with Israel-based Alvarion.

The Globe and Mail newspaper has an interesting analysis of Nortel's revenue model and how moving to LTE may help in long term.

Analysts praised the move, in part because some of North America's largest phone companies are leaning toward LTE.

Richard Lowe, president of Nortel's carrier networks division, says the company is the only one in the industry conducting live trials of LTE.

The first LTE products are expected to be ready for sale in 2010, and the market is estimated to be worth $400-million in the first year and $1.6-billion in 2011.

Even if Nortel is first to get LTE to market, the technology is unlikely to match CDMA for profitability. Mr. Notter describes Nortel's CDMA business as a "gravy train," thanks to what has effectively been a duopoly between Nortel and French telecom giant Alcatel-Lucent.

One reason the transition to LTE will hurt Nortel is because the company will be competing against more vendors, including Telefon AB LM Ericsson of Sweden, Finnish-German joint venture Nokia-Siemens Networks and China's Huawei Technologies Co. Ltd., Mr. Notter said.

Nortel's own financial forecasts indicate the juicy 24-per-cent operating margin in wireless will slide to between 13 per cent and 16 per cent by 2011 as annual growth falls 3 per cent on a compounded annual basis.


Nortel vows to offset these declines by offering new software and services to customers on networks capable of handling greater amounts of data in new and faster ways.

One such service is unified communications, which Nortel chief technology officer John Roese defines broadly as multimedia features that allow people to interact and collaborate from any device and any location.

In terms of intelligent network services, 61 per cent of companies said they were interested in buying unified communications, which they considered to include integrated voice, e-mail, instant messaging, Web and video-conferencing functions.

In another news, Long Term Evolution (LTE), the 4G technology of choice for many major wireless carriers, won’t be commercially launched until at least 2010, but could see upwards of 32 million subscribers by 2013, according to a new study by ABI Research.

Asia-Pacific countries will account for much of LTE’s early growth, according to ABI, given that China Mobile, and Japan’s NTT Docomo and KDDI are expected to make use of the technology.

“ABI Research anticipates about 12 million Asia-Pacific LTE network subscribers in 2013,” said senior ABI analyst, Nadine Manjaro. “The remainder will be split about 60-40% between Western Europe and North America,” where Vodafone and Verizon Wireless (respectively) have announced plans to adopt LTE.

Meanwhile in Korea, KTF announced that its working on LTE with Samsung and ETRI. LG has also been working on LTE from the start.

Saturday, 14 June 2008

Nokia, Google, Apple to battle the Mobile Ad market

The mobile ad market is suddenly going to become very hot with the launch of "Nokia Advertising Alliance".

In a press release we have been informed of the launch of the Nokia Advertising Alliance, which will simplify mobile advertising for brand advertisers. The program brings together leading mobile marketing solutions, including couponing, location-based targeting, image recognition, and other emerging technologies, to offer advertisers a simple way to increase consumer engagement. Now brands can work with Nokia to combine the reach of mobile advertising on the Nokia Media Network with the latest mobile technologies for more effective campaigns.

"The Advertising Alliance brings together the most innovative technologies in the market, and brings trust to brands who want to use them," said Scott Heron, Director of Digital Services at Wunderman.

Members of the Alliance are integrated with the Nokia Media Network allowing brands to plan, execute and measure mobile advertising campaigns through a single Nokia interface. A range of companies have been initially certified as Members of the Alliance, including i-movo, Mobile Acuity, Mobiqa, and uLocate, with many additional members in testing. Leading brands from the automotive to entertainment industries have built campaigns using the Nokia Advertising Alliance.

We are all aware of Google's ambition to dominate the mobile ad space. Google maps of my E61 already are able to tell me my location without the need of GPS. In fact they tell me the accuracy of my location as well. Some of us are already seeing the local ads appear on Google maps. In an interview last month, Eric Schmidt (Google CEO) said that soon we will be able to find property in an area when we switch on Google maps and maybe in 5 years time Google may become the largest Estate agent.

By the way, is Nokia trying to do the same with Nokia maps?

Google definitely likes to do things its own way. What is the possibility of it joining the Nokia alliance? What are the chances of the Nokia alliance wanting Google? Also we should probably not leave Apple with its iPhone out of the equation.

Apparently iPhone has some amazing discovery mechanism (sorry not used iPhone yet personally) which helps application creators push and advertise their applications to users and this helps increase the sales. Combine this with large touch screen and high quality video capability. This can create a deadly cocktail for advertisement if used properly. Apple is another player that wants to do things its own way. Wouldnt this create a three way battle?

And yes, we should for the time being forget the likes of Microsoft, Yahoo, etc.

Sunday, 8 June 2008

3GPP Selects Femtocell Architecture

Picked this up from Dean Bubley's post on his blog.
The Third Generation Partnership Project (3GPP) has adopted an official architecture for 3G femtocell home base stations.

The 3GPP wants to have the new standard done by the end of this year, which appears to be an aggressive time schedule given the fact that vendors had various approaches to building a femtocell base station. The agreed upon architecture follows an access network-based approach, leveraging existing standards, called IU-cs and Iu-ps interfaces, into the core service network. The result is a new interface called Iu-h.

The architecture defines two new network elements, the femtocell and the femtocell gateway. Between these elements is the new Iu-h interface. This solution was backed by Alcatel-Lucent, Kineto Wireless, Motorola and NEC.

All of the femtocell vendors must go back and change their access point and network gateway equipment to comply with the new standard interface.

All femtocell vendors will have to make changes to their access points. Alcatel-Lucent, Motorola, NEC, and those that already use Kineto's GAN approach, such as Ubiquisys, will have the least work to do.
Kineto Wireless, Inc., announced its full support for the 3GPP agreement reached last week on the Home NodeB (HNB) architecture for femtocell-to-core network connectivity. Recognizing that a standard is needed for the mass-market success of femtocells, Kineto took a lead role in developing consensus among the contributing companies. Having an agreed architecture marks a major milestone towards the completion of a global 3G femtocell standard.
The agreed 3GPP HNB architecture follows an access network-based approach, leveraging the existing Iu-cs and Iu-ps interfaces into the core service network. The architecture defines two new network elements, the HNB (a.k.a. Femtocell) and the HNB Gateway (a.k.a. Femto Gateway). Between these elements is the new Iu-h interface.
  • Home NodeB (HNB) – Connected to an existing residential broadband service, an HNB provides radio coverage for standard 3G handsets within a home. HNBs incorporate the capabilities of a standard NodeB as well as the radio resource management functions of a standard Radio Network Controller (RNC).
  • HNB Gateway (HNB-GW): Installed within an operator’s network, the HNB Gateway aggregates traffic from a large number of HNBs back into an existing core service network through the standard Iu-cs and Iu-ps interfaces.
  • Iu-h Interface: Residing between an HNB and an HNB-GW, the Iu-h interface includes a new HNB application protocol (HNBAP) for enabling highly-scalable, ad-hoc HNB deployment. The interface also introduces an efficient, scalable method for transporting Iu control signaling over the Internet.

With an agreement on an underlying femtocell architecture, 3GPP has now transitioned to the phase of developing detailed specifications. This work is targeted for completion by the end of 2008.

More Info:

Discovery Protocols for FMC devices


Today’s mobile computers include additional features such as Java, Bluetooth, Smart Covers, WAP 2.0, and JavaScript enabled Web pages and with embedded SOAP, 3GPP with SIP, and other technologies that make it possible to provide sophisticated, distributed applications. These new applications need Discovery tools to learn about the nearby networks or network-accessible resources available to them.

In future when FMC is common and PnP devices will be commonly available, when a user brings a new device home, the device will be able to automatically integrate itself into the home network. Discovery protocols are the mechanisms that make this possible.

Discovery protocols are network protocols used to discover services, devices, or other networked resources. The ability to discover networked resources at runtime makes it possible to dynamically configure distributed systems.

Over the past 20 years, dozens of discovery protocols have been developed. Despite many years of practical experience with discovery protocols, it remains an active area of research for many organizations investigating topics related to scalability or security or context awareness.
Usually, a discovery protocol allows a service to be discovered on the basis of its type, its Application Programming Interfaces (APIs), and other properties—not just its name. For example, DNS (Distributed Name Service) is a name service. It resolves domain names to Internet Protocol (IP) addresses. For example, SLP (Service Location Protocol) clients can ask for services that match certain constraints, and servers respond with the names of services that match those constraints.

In general, there are four basic mechanisms that discovery protocols use for “discovery.”
1. Advertisement
2. Inquiry
3. Directories
4. Description

The wide range of protocols, representation languages, and query languages has resulted in very little, if any, interoperability between the various discovery protocols. As a consequence, most commercially available systems implement multiple discovery protocols.

Supporting multiple protocols has major drawbacks. Many mobile devices are memory constrained or have inadequate user interface capabilities. This limitation makes it very undesirable to use multiple protocols when, at least theoretically, a single protocol would be sufficient. Users of laptops or desktops are not usually concerned with the cost or power consumption of the network they are connected to. Mobile phone users may be concerned inefficient protocols designed for Local Area Networks (LANs)—both the financial cost of using the cellular network and the drain on their batteries of using any network.

It is common for discovery protocols to come as an integrated part of a distributed middleware toolkit. In addition to discovery, distributed middleware toolkits provide for remote invocation and events. For example, SSDP (Simple Service Discovery Protocol) is part of UPnP (Universal Plug and Play); a suite of distributedcomputing technologies that includes SSDP, SOAP (Simple Object Access Protocol), and GENA (Generalized Event Notification Architecture). Likewise, Jini is a distributed middleware toolkit that provides its own services discovery protocol.

Distributed middleware toolkits make it possible to create smart controllers that (1) use discovery protocols to integrate themselves with the home devices, (2) are aware of the device state and display information from the device to the user, (3) receive responses from control messages, (4) can authenticate themselves as authorized for the device, and (5) coordinate the actions of many devices.

For more information see: