Showing posts with label Release 13. Show all posts
Showing posts with label Release 13. Show all posts

Monday 14 September 2015

3GPP Release-13 whitepapers and presentations

With 3GPP Release-13 due early/mid next year, there has been a flurry of presentations and whitepapers on this topic. This post provides some of these. I will try and maintain a list of whitepapers/presentations as part of this post as and when released.

1. June 2015: LTE Release 13 and road to 5G - Presented by Dino Flore, Chairman of 3GPP RAN, (Qualcomm Technologies Inc.)



2. Sep 2015: Executive Summary - Inside 3GPP Release 13 by 4G Americas



3. June 2015: Mobile Broadband Evolution Towards 5G: 3GPP Rel-12 & Rel-13 and Beyond by 4G Americas

4. April 2015: LTE release 13 – expanding the Networked Society by Ericsson


Friday 28 August 2015

MCPTT Off-network and UE to UE/Network Relays

3GPP SA6 recently held a workshop on Mission Critical Push To Talk (MCPTT) stage 3 development in Canada. You can look at the meeting report here and download any presentations from here.

An interesting presentation that caught my attention was one on "MCPTT Off-network Architecture". The presentation is embedded below where it is described technically what is meant by Off-network. From my understanding an off-network from MCPTT point of view is one where the UE does not have network coverage.

In such a situation a UE can connect to another UE that can connect to UE/network (if available) to relay the message. Its similar to another technology that I have talked about, Multihop Cellular Networks and ODMA. Anyway, here is the presentation:



Sometimes the standards can take too long to develop a feature and apps can come and deliver a similar service at a very short notice. One such App that does something similar is called Firechat, which played a big role in many protests worldwide. The video explaining it below is worth watching.


The problem with Apps is that they cannot be used by the emergency services or other governmental organisations, unless a standard feature is available. This is the expectation from this Off-network relays. It would work in combination with D2D/ProSe.


For anyone interested in the latest Public Safety (PS), here is a presentation by SA6 chairman from July

Sunday 26 July 2015

LTE vs TETRA for Critical Communications

Sometime back I was reading this interview between Martin Geddes and Peter Clemons on 'The Crisis in UK Critical Communications'. If you haven't read it, I urge you to read it here. One thing that stuck out was as follows:

LTE was not designed for critical communications.

Commercial mobile operators have moved from GSM to UMTS to WCDMA networks to reflect the strong growth in demand for mobile data services. Smartphones are now used for social media and streaming video. LTE technology fulfils a need to supply cheap mass market data communications.

So LTE is a data service at heart, and reflects the consumer and enterprise market shift from being predominantly voice-centric to data-centric. In this wireless data world you can still control quality to a degree. So with OFDM-A modulation we have reduced latency. We have improved how we allocate different resource blocks to different uses.

The marketing story is that we should be able to allocate dedicated resources to emergency services, so we can assure voice communications and group calling even when the network is stressed. Unfortunately, this is not the case. Even the 3GPP standards bodies and mobile operators have recognised that there are serious technology limitations.
This means they face a reputational risk in delivering a like-for-like mission-critical voice service.

Won’t this be fixed by updated standards?
The TETRA Critical Communications association (TCCA) began to engage with the 3GPP standards process in 2012. 3GPP then reached out to peers in the USA and elsewhere: the ESMCP project here in the UK, the US FirstNet programme, and the various European associations.

These lobbied 3GPP for capabilities specifically aimed at critical communications requirements. At the Edinburgh meeting in September 2014, 3GPP set up the SA6specification group, the first new group in a decade.

The hope is that by taking the critical communications requirement into a separate stream, it will no longer hold up the mass market release 12 LTE standard. Even with six meetings a year, this SA6 process will be a long one. By the end of the second meeting it had (as might be expected) only got as far as electing the chairman.

It will take time to scope out what can be achieved, and develop the critical communications functionality. For many players in the 3GPP process this is not a priority, since they are focusing solely on mass market commercial applications.

Similar point was made in another Critical communications blog here:

LTE has emerged as a long term possible replacement for TETRA in this age of mobile broadband and data. LTE offer unrivalled broadband capabilities for such applications as body warn video streaming, digital imaging, automatic vehicle location, computer-assisted dispatch, mobile and command centre apps, web access, enriched e-mail, mobile video surveillance apps such as facial recognition, enhanced Telemetry/remote diagnostics, GIS and many more. However, Phil Kidner, CEO of the TCCA pointed out recently that it will take many LTE releases to get us to the point where LTE can match TETRA on key features such as group working, pre-emptive services, network resilience, call set-up times and direct mode.
The result being, we are at a point where we have two technologies, one offering what end users want, and the other offering what end users need. This has altered the discussion, where now instead of looking at LTE as a replacement, we can look at LTE as a complimentary technology, used alongside TETRA to give end users the best of both worlds. Now the challenge appears to be how we can integrate TETRA and LTE to meet the needs and wants of our emergency services, and it seems that if we want to look for guidance and lessons on the possible harmony of TETRA and LTE we should look at the Middle East.
While I was researching, I came across this interesting presentation (embedded below) from the LTE World Summit 2015





The above is an interesting SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis for TETRA and LTE. While I can understand that LTE is yet unproven, I agree on the lack of spectrum and appropriate bands.

I have been told in the past that its not just the technology which is an issue, TETRA has many functionalities that would need to be duplicated in LTE.



As you can see from this timeline above, while Rel-13 and Rel-14 will have some of these features, there are still other features that need to be included. Without which, safety of the critical communication workers and public could be compromised.

The complete presentation as follows. Feel free to voice your opinions via comments.


Sunday 12 July 2015

S8HR: Standardization of New VoLTE Roaming Architecture

VoLTE is a very popular topic on this blog. A basic VoLTE document from Anritsu has over 40K views and my summary from last years LTE Voice summit has over 30K views. I assume this is not just due to the complexity of this feature.

When I attended the LTE Voice summit last year, of the many solutions being proposed for roaming, 'Roaming Architecture for Voice over LTE with Local Breakout (RAVEL)' was being touted as the preferred solution, even though many vendors had reservations.

Since then, GSMA has endorsed a new VoLTE roaming architecture, S8HR, as a candidate for VoLTE roaming. Unlike previous architectures, S8HR does not require the deployment of an IMS platform in VPLMN. This is advantageous because it shortens time-to-market and provides services universally without having to depend on the capability of VPLMN.



Telecom Italia has a nice quick summary, reproduced below:

S8HR simplicity, however, is not only its strength but also its weakness, as it is the source of some serious technical issues that will have to be solved. The analysis of these issues is on the Rel13 3GPP agenda for the next months, but may overflow to Rel14. Let’s see what these issues are, more in detail:


Regulatory requirements - S8HR roaming architecture needs to meet all the current regulatory requirements applicable to voice roaming, specifically:
  • Support of emergency calls - The issues in this context are several. For example, authenticated emergency calls rely on the existence if an IMS NNI between VPLMN and HPLMN (which S8HR does not provide); conversely, the unauthenticated emergency calls, although technically feasible in S8HR, are allowed only in some Countries subject to the local regulation of VPLMN. Also, for a non-UE-detectable IMS Emergency call, the P-CSCF in the HPLMN needs to be capable of deciding the subsequent action (e.g. translate the dialed number and progress the call or reject it with the indication to set up an emergency call instead), taking the VPLMN ID into account. A configuration of local emergency numbers per Mobile Country Code on P-CSCF may thus be needed.
  • ­Support of Lawful Interception (LI) & data retention for inbound roamers in VPLMN -  S8HR offers no solution to the case where interception is required in the VPLMN for inbound roamers. 3GPP is required to define a solution that fulfill such vital regulatory requirement, as done today in circuit switched networks. Of course VPLMN and HPLMN can agree in their bilateral roaming agreement to disable confidentiality protection to support inbound roamer LI but is this practice really viable from a regulatory point of view?
Voice call continuity – The issue is that when the inbound roamers lose the LTE coverage to enter into  a 2G/3G CS area, the Single Radio Voice Call Continuity (SRVCC) should be performed involving the HPLMN in a totally different way than current specification (i.e. without any IMS NNI being deployed).
Coexistence of LBO and S8HR roaming architectures will have to be studied since an operator may need to support both LBO and S8HR VoLTE roaming architecture options for roaming with different operators, on the basis of bilateral agreement and depending on the capability.
Other issues relate to the capability of the home based S-CSCF and TAS (Telephony Application Server) to be made aware about the VPLMN identity for charging purposes and to enable the TAS to subsequently perform communication barring supplementary services. Also, where the roaming user calls a geo-local number (e.g. short code, or premium numbers), the IMS entities in HPLMN must do number resolution to correctly route the call.
From preliminary discussions held at Working Group level in SA2 (architecture) and SA3 (security) in April, it was felt useful to create a new 3GPP Technical Report to perform comprehensive technical analysis on the subject. Thus it is expected that the discussions will continue in the next months until the end of 2015 and will overheat Release 13 agenda due to their commercial and “political” nature. Stay tuned to monitor the progress of the subject or contact the authors for further information!
NTT Docomo also did some trials back in February and got some brilliant results:

In the trials, DOCOMO and KT achieved the world's first high-definition voice and video call with full end-to-end quality of service. Also, DOCOMO and Verizon achieved the world's first transoceanic high-definition VoLTE roaming calls. DOCOMO has existing commercial 3G and 4G roaming relations with Verizon Wireless and KT.
The calls were made on an IP eXchange (IPX) and network equipment to replicate commercial networks. With only two months of preparation, which also proved the technology's feasibility of speedy commercialization, the quality of VoLTE roaming calls using S8HR architecture over both short and long distances was proven to be better than that of existing 3G voice roaming services.


In fact, NTT Docomo has already said based on the survery from GSMA's Network 2020 programme that 80% of the network operators want this to be supported by the standards and 46% of the operators already have a plan to support this.


The architecture has the following technical characteristics:
(1) Bearers for IMS services are established on the S8 reference point, just as LTE data roaming.
(2) All IMS nodes are located at Home Public Land Mobile Network (HPLMN), and all signaling and media traffic for the VoLTE roaming service go through HPLMN.
(3) IMS transactions are performed directly between the terminal and P-CSCF at HPLMN. Accordingly, Visited Public Land Mobile Network (VPLMN) and interconnect networks (IPX/GRX) are not service-aware at the IMS level. The services can only be differentiated by APN or QoS levels.

These three technical features make it possible to provide all IMS services by HPLMN only and to minimize functional addition to VPLMN. As a result, S8HR shortens the time-to-market for VoLTE roaming services.

Figure 2 shows the attach procedure for S8HR VoLTE roaming. From Steps 1 to 3, there is no significant difference from the LTE data roaming attach procedure. In Step 4, HSS sends an update location answer message to MME. In order for the MME to select the PGW in HPLMN (Step 5), the MME must set the information element VPLMN Dynamic Address “Allowed,” which is included in the subscribed data, to “Not Allowed.” In Step 6, the bearer for SIP signaling is created between SGW and PGW with QCI=5. MME sends an attach accept message to the terminal with an IMS Voice over PS Session Support Indication information element, which indicates that VoLTE is supported. The information element is set on the basis of the MME’s internal configuration specifying whether there is a VoLTE roaming agreement to use S8HR. If no agreement exists between two PLMNs, the information element will not be set.

The complete article from the NTT Docomo technical journal is embedded



Sunday 28 June 2015

LTE-M a.k.a. Rel-13 Cellular IoT

Some months back I wrote about the LTE Category-0 devices here. While Rel-12 LTE Cat 0 devices are a first step in the right direction, they are not enough for small sensor type of devices where long battery life is extremely important. As can be seen in the picture above, this will represent a huge market in 2025.


To cater for this requirement of extremely long battery life, it is proposed that Rel-13 does certain modifications for these low throughput sensor type devices. The main modification would be that the devices will work in 1.4MHz bandwidth only, regardless of the bandwidth of the cell. The UE transmit power will be max of 20dB and the throughput would be further reduced to a maximum of 200kbps.

The presentation, from Cambridge Wireless Future of Wireless International Conference is embedded below:



See also:

Sunday 19 April 2015

3GPP Release-13 work started in earnest


The 3GPP news from some months back listed the main RAN features that have been approved for Release-13 and the work has already started on them. The following are the main features (links contain .zip files):

  • LTE in unlicensed spectrum (aka Licensed-Assisted Access) - RP-150055
  • Carrier Aggregation enhancements - RP-142286
  • LTE enhancements for Machine-Type Communications (MTC) - RP-141865
  • Enhancements for D2D - RP-142311
  • Study Item Elevation Beamforming / Full-Dimension MIMO - RP-141831
  • Study Item Enhanced multi-user transmission techniques - RP-142315
  • Study Item Indoor positioning - RP-141102
  • Study Item Single-cell Point-to-Multipoint (SC-PTM) - RP-142205


Another 3GPP presentation from late last year showed the system features that were being planned for Rel-13 as shown above.

I have also posted a few items earlier relating to Release13, as follows:


Ericsson has this week published a whitepaper on release 13, with a vision for 'Networked Society':
The vision of the Networked Society, where everything that benefits from being connected will be connected, places new requirements on connectivity. LTE is a key component in meeting these demands, and LTE release 13 is the next step in the LTE evolution.
Their whitepaper embedded below:



It should be pointed out that 5G work does not start until Release-15 as can be seen from my tweet

xoxoxo Added Later (26/04/2015) xoxoxo
I came across this presentation from Keysight (Agilent) where Moray Rumney has provided information in much more detail.


Sunday 12 April 2015

LTE-Hetnet (LTE-H) a.k.a. LTE Wi-Fi Link Aggregation (LWA)


We have talked about the unlicensed LTE (LTE-U), re-branded as LTE-LAA many times on this blog and the 3G4G Small Cells blog. In fact some analysts have decided to call the current Rel-12 non-standardised Rel-12 version as LTE-U and the standardised version that would be available as part of Release-13 as LTE-LAA.

There is a lot of unease in the WiFi camp because LTE-LAA may hog the 5GHz spectrum that is available as license-exempt for use of Wi-Fi and other similar (future) technologies. Even though LAA may be more efficient as claimed by some vendors, it would reduce the usage for WiFi users in that particular spectrum.

As a result, some vendors have recently proposed LTE/WiFi Link Aggregation as a new feature in Release-13. Alcatel-Lucent, Ruckus Wireless and Qualcomm have all been promoting this. In fact Qualcomm has a pre-MWC teaser video on Youtube. The demo video is embedded as follows:



The Korean operator KT was also involved in demoing this in MWC along with Samsung and Qualcomm. They have termed this feature as LTE-Hetnet or LTE-H.

The Korean analyst firm Netmanias have more detailed technical info on this topic.

Link aggregation by LTE-H demonstrated at MWC 2015 (Source: Netmanias)

As can be seen the data is split/combined in PDCP layer. While this example above shows the practical implementation using C-RAN with Remote Radio Head (RRH) and BaseBand Unit (BBU) being used, the picture at the top shows LTE Anchor in eNodeB. There would be a need for an ideal backhaul to keep latency in the eNodeB to minimum when combining cellular and WiFi data.

Comparison of link level Carrier Aggregation technologies (Source: Netmanias)

The above table shows comparison between the 3 main techniques for increasing data rates through aggregation; CA, LTE-U/LAA and LTE-H/LWA. While CA has been part of 3GPP Release-10 and is available in more of less all new LTE devices, LTE-U and LTE-H is new and would need modifications in the network as well as in the devices. LTE-H would in the end provide similar benefits to LTE-U but is a safer option from devices and spectrum point of view and would be a more agreeable solution by everyone, including the WiFi community.

A final word; last year we wrote a whitepaper laying out our vision of what 4.5G is. I think we put it simply that in 4.5G, you can use WiFi and LTE at the same time. I think LTE-H fulfills that vision much better than other proposals.

Sunday 8 March 2015

LTE Category-0 low power M2M devices


While we have talked about different LTE categories, especially higher speeds, we have not yet discussed Category-0 or Cat-0 for M2M.

A recent news report stated the following:

CAT-1 and CAT-0 are lower speed and power versions of the LTE standard which dramatically extend the addressable market for carriers and chip makers alike. They introduce new IoT targeted features, extend battery operation and lower the cost of adding LTE connectivity.
“While chipsets supporting these lower categories are essential for numerous applications, including wearable devices, smart home and smart metering, there has been an industry development gap that we had anticipated two years ago,” said Eran Eshed, co-founder and vice president of marketing and business development at Altair. “We’ve worked hard to address this gap by being first to market with true CAT-1 and 0 chipsets featuring a power/size/cost combination that is a massive game-changer.”
Ericsson has an interesting presentation that talks about LTE evolution for cellular IoT. While Rel-12 Cat-0 would use the normal allocated bandwidth (upto 20MHz), Rel-13 plans further enhancements to save even more power by reducing the bandwidth to 1.4Mhz. Another possible saving of power comes from the use of Half Duplex (but its optional). There is a very interesting presentation from Mstar semiconductors on half duplex that I have blogged about here. Anyway, the presentation from Ericsson is here:



When we talk about 50 billion M2M devices, a question that I regularly ask is how many of them will be using cellular and how many will use other technologies. Its good to see that my skepticism is shared by others as well, see the tweet below.

Click on the pic.twitter.com/Z7s6wqxkBM to see the actual media.

Nokia has also got an interesting whitepaper on this topic which talks about optimizing LTE and the architectural evolution that will lead cellular LTE to become a compelling technology so that it can be widely adopted. That paper is embedded as well below.



Tuesday 18 November 2014

SON Update from 3GPP SA5

Below is a presentation from Christian Toche, 3GPP SA5 chairman in the SON Conference last month. I also blogged about his presentation last year which is available here.



Saturday 27 September 2014

Elevation Beamforming / Full-Dimension MIMO


Four major Release-13 projects have been approved now that Release-12 is coming to a conclusion. One of them is Full dimension MIMO. From the 3GPP website:

Leveraging the work on 3D channel modeling completed in Release 12, 3GPP RAN will now study the necessary changes to enable elevation beamforming and high-order MIMO systems. Beamforming and MIMO have been identified as key technologies to address the future capacity demand. But so far 3GPP specified support for these features mostly considers one-dimensional antenna arrays that exploit the azimuth dimension. So, to further improve LTE spectral efficiency it is quite natural to now study two-dimensional antenna arrays that can also exploit the vertical dimension.
Also, while the standard currently supports MIMO systems with up to 8 antenna ports, the new study will look into high-order MIMO systems with up to 64 antenna ports at the eNB, to become more relevant with the use of higher frequencies in the future.
Details of the Study Item can be found in RP-141644.
There was also an interesting post by Eiko Seidel in the 5G standards group:

The idea is to introduce carrier and UE specific tilt/beam forming with variable beam widths. Improved link budget and reduced intra- and inter-cell interference might translate into higher data rates or increased coverage at cell edge. This might go hand in hand with an extensive use of spatial multiplexing that might require enhancements to today’s MU-MIMO schemes. Furthermore in active antenna array systems (AAS) the power amplifiers become part of the antenna further improving the link budget due to the missing feeder loss. Besides a potentially simplified installation the use of many low power elements might also reduce the overall power consumption. 

At higher frequencies the antenna elements can miniaturized and their number can be increased. In LTE this might be limited to 16, 32 or 64 elements while for 5G with higher frequency bands this might allow for “massive MIMO”. 

WG: Primary RAN1 (RP-141644) 
started 06/2014 (RAN#64), completion date 06/2015 (RAN#68)
work item might follow the study with target 12/2015 (RAN#70) 

Supporting companies
Samsung/NSN, all major vendors and operators 

Based on RAN1 Rel.12 Study Item on 3D channel model (TR36.873) 

Objectives 
Phase 1: antenna configurations and evaluation scenarios Rel.12 performance evaluation with 3D channel model 

Phase 2: study and simulate FD-MIMO enhancement identify and evaluate techniques, analyze specification impact performance evaluation for 16, 32, 64 antenna elements enhancements for SU-/MU-MIMO (incl. higher dimension MU-MIMO) (keep the maximum number of layer per UE unchanged to 8)


An old presentation from Samsung is embedded below that will provide more insight into this technology:



Related post:

Thursday 18 September 2014

Update on Public Safety and Mission Critical communications

Its been a while since I wrote about Public Safety and Mission Critical communications, so here is a quick summary.


Iain Sharp have a good overview of whats happening in the standards in the LTE World Summit back in June. Embedded below is his complete presentation.



There is another slightly older presentation that I also thought was worthwhile adding here.

There is a lot of discussion centred around the use of commercial networks for mission critical communications, mainly die to cost. While this may make sense to an extent, there should be procedures put in place to give priority to public safety in case of emergency.



We are planning to run a one day training in Jan 2015 on public safety. If this is of interest to you then please get in touch with me for more details.

x-o-x-o-x-o-x-o-x-o-x-o-x
After the post someone brought these links to my attention so I am adding them below:

Sunday 20 July 2014

LA-LTE and LAA


Recently came across a presentation by Ericsson where they used the term LA-LTE. I asked a few colleagues if they knew or could guess what it means and they all drew blank. I have been blogging about Unlicensed LTE (a.k.a. LTE-U) on the Small Cells blog here. This is a re-branding of LTE-U

LA-LTE stands for 'Licensed Access' LTE. In fact the term that has now been adopted in a recent 3GPP workshop (details below) is Licensed Assisted Access (LAA).

Couple of months back I blogged in detail about LTE-U here. Since then, 3GPP held a workshop where some of the things I mentioned got officially discussed. In case you want to know more, details here. I have to mention that the operator community is quite split on whether this is a better approach or aggregating Wi-Fi with cellular a better approach.

The Wi-Fi community on the other hand is unhappy with this approach. If cellular operators start using their spectrum than it means less spectrum for them to use. I wrote a post on the usage of Dynamic Spectrum Access (DSA) Techniques that would be used in such cases to make sure that Wi-Fi and cellular usage does not happen at the same time, leading to interference.

Here is a presentation from the LTE-U workshop on Use cases and scenarios, not very detailed though.



Finally, the summary presentation of the workshop. As it says on the final slide "The current SI proposal focuses on carrier aggregation operations and uses the acronym LAA (Licensed Assisted Access)", you would be seeing more of LAA.


Thursday 10 July 2014

Taking 5G from vision to reality

This presentation by Moray Rumney of Agilent (Keysight) in Cambridge Wireless, Future of Wireless International conference takes a different angle at what the targets for different technologies have been and based on that what should be the targets for 5G. In fact he has an opinion on M2M and Public safety as well and tries to combine it with 5G. Unfortunately I wasnt at this presentation but from having heard Moray speak in past, I am sure it was a thought provoking presentation.



All presentations from the Future of Wireless International Conference (FWIC) are available here.

Friday 4 July 2014

Cell capacity and Opportunistic Use of Unlicensed and Shared Spectrum

One very interesting presentation from the LTE World Summit was about Improving the cell capacity by using unlicensed and shared spectrum opportunistically. Kamran Etemad is a senior advisor to FCC & UCMP and even though he was presenting this in his personal capacity, it reflected some interesting views that are quite prevalent in the USA.

If you don't know about Dynamic Spectrum Access Schemes, I wrote a post on the Small Cells blog here. The slide above is quite interesting as it shows the possibility of a 'Generalized' Carrier Aggregation in 3GPP Release-13. Personally, we believe that LTE + WiFi working together will be far more successful than LTE + LTE-U (unlicensed). As the blog readers would be aware, we have been pushing our vision of LTE + Wi-Fi working together; which we are calling as 4.5G. In case if you have not seen, our whitepaper is here.

The presentation is embedded below for reference:


Thursday 16 January 2014

3GPP Rel-12 and Future Security Work


Here is the 3GPP presentation from the 9th ETSI Security workshop. Quite a few bits on IMS and IMS Services and also good to see new Authentication algorithm TUAK as an alternative to the widely used Milenage algorithm.



Wednesday 31 July 2013

Making LTE fit for the IoT

Another presentation from the #FWIC2013. This presentation by Vodafone covers some of the areas where the LTE standards are being tweaked for making M2M work with them without issues.


Another area is the access barring that I have blogged about before here. This will become important when we have loads of devices trying to access the network at the same time.

The presentation is embedded below and you can also listen to the audio here.