Showing posts sorted by relevance for query positioning. Sort by date Show all posts
Showing posts sorted by relevance for query positioning. Sort by date Show all posts

Friday, 23 October 2020

Positioning Techniques for 5G NR in 3GPP Release-16

I realised that I have not looked at Positioning techniques a lot in our blogs so this one should be a good summary of the latest positioning techniques in 5G.

Qualcomm has a nice short summary hereRelease 16 supports multi-/single-cell and device-based positioning, defining a new positioning reference signal (PRS) used by various 5G positioning techniques such as roundtrip time (RTT), angle of arrival/departure (AoA/AoD), and time difference of arrival (TDOA). Roundtrip time (RTT) based positioning removes the requirement of tight network timing synchronization across nodes (as needed in legacy techniques such as TDOA) and offers additional flexibility in network deployment and maintenance. These techniques are designed to meet initial 5G requirements of 3 and 10 meters for indoor and outdoor use cases, respectively. In Release 17, precise indoor positioning functionality will bring sub-meter accuracy for industrial IoT use cases.

I wrote about the 5G Americas white paper titled, "The 5G Evolution: 3GPP Releases 16-17" highlighting new features in 5G that will define the next phase of 5G network deployments across the globe. The following is from that whitepaper:

Release-15 NR provides support for RAT-independent positioning techniques and Observed Time Difference Of Arrival (OTDOA) on LTE carriers. Release 16 extends NR to provide native positioning support by introducing RAT-dependent positioning schemes. These support regulatory and commercial use cases with more stringent requirements on latency and accuracy of positioning.25 NR enhanced capabilities provide valuable, enhanced location capabilities. Location accuracy and latency of positioning schemes improve by using wide signal bandwidth in FR1 and FR2. Furthermore, new schemes based on angular/spatial domain are developed to mitigate synchronization errors by exploiting massive antenna systems.

The positioning requirements for regulatory (e.g. E911) and commercial applications are described in 3GPP TR 38.855. For regulatory use cases, the following are the minimum performance requirements:

  • Horizontal positioning accuracy better than 50 meters for 80% of the UEs.
  • Vertical positioning accuracy better than 5 meters for 80% of the UEs.
  • End-to-end latency less than 30 seconds.

For commercial use cases, for which the positioning requirements are more stringent, the following are the starting-point performance targets

  • Horizontal positioning accuracy better than 3 meters (indoors) and 10 meters (outdoors) for 80% of the UEs.
  • Vertical positioning accuracy better than 3 meters (indoors and outdoors) for 80% of the UEs.
  • End-to-end latency less than 1 second.

Figure 3.11 above shows the RAT-dependent NR positioning schemes being considered for standardization in Release 16:

  • Downlink time difference of arrival (DL-TDOA): A new reference signal known as the positioning reference signal (PRS) is introduced in Release 16 for the UE to perform downlink reference signal time difference (DL RSTD) measurements for each base station’s PRSs. These measurements are reported to the location server.
  • Uplink time difference of arrival (UL-TDOA): The Release-16 sounding reference signal (SRS) is enhanced to allow each base station to measure the uplink relative time of arrival (UL-RTOA) and report the measurements to the location server.
  • Downlink angle-of-departure (DL-AoD): The UE measures the downlink reference signal receive power (DL RSRP) per beam/gNB. Measurement reports are used to determine the AoD based on UE beam location for each gNB. The location server then uses the AoDs to estimate the UE position.
  • Uplink angle-of-arrival (UL-AOA): The gNB measures the angle-of-arrival based on the beam the UE is located in. Measurement reports are sent to the location server.
  • Multi-cell round trip time (RTT): The gNB and UE perform Rx-Tx time difference measurement for the signal of each cell. The measurement reports from the UE and gNBs are sent to the location server to determine the round trip time of each cell and derive the UE position.
  • Enhanced cell ID (E-CID). This is based on RRM measurements (e.g. DL RSRP) of each gNB at the UE. The measurement reports are sent to the location server.

UE-based measurement reports for positioning:

  • Downlink reference signal reference power (DL RSRP) per beam/gNB
  • Downlink reference signal time difference (DL RSTD)
  • UE RX-TX time difference

gNB-based measurement reports for positioning:

  • Uplink angle-of-arrival (UL-AoA)
  • Uplink reference-signal receive power (UL-RSRP)
  • UL relative time of arrival (UL-RTOA)
  • gNB RX-TX time difference

NR adopts a solution similar to that of LTE LPPa for Broadcast Assistance Data Delivery, which provides support for A-GNSS, RTK and OTDOA positioning methods. PPP-PTK positioning will extend LPP A-GNSS assistance data message based on compact “SSR messages” from QZSS interface specifications. UE-based RAT-dependent DL-only positioning techniques are supported, where the positioning estimation will be done at the UE-based on assistance data provided by the location server.


Rohde&Schwarz have a 5G overview presentation here. This picture from that presentation is a good summary of the 3GPP Release-16 5G NR positioning techniques. This nice short video on "Release 16 Location Based Services Requirements" complements it very well. 


Related Posts:

Monday, 12 April 2021

Positioning in 5G networks



I have written about the 5G positioning techniques not that long back on this blog here and on connectivity technology blog here. With Release-16 now ready for deployment, Huawei has already announced world's first in 5G Indoor Positioning. Their announcement said:

China Mobile Suzhou and Huawei reached a new milestone with the verification of the 5G indoor positioning capability in metro transport scenarios in Suzhou — a major city located along the southeastern edge of Jiangsu Province in eastern China. The verification showed that, even with pRRUs being hidden, a positioning precision of 3 to 5 m can be achieved in 90% of the platform and hall areas. This is the first time that 5G indoor positioning has been verified on live networks in the world, providing valuable experience for the commercial growth of 5G positioning in vertical industries.

Indoor location-based services are in high demand of vertical applications, such as indoor navigation, asset tracking, geofencing, logistics management, and personnel management, which reflects the huge market space of indoor positioning. Currently, indoor positioning technologies are of great variety and most of them need to be deployed and maintained individually, resulting in high end-to-end costs. As a part of the continuous evolution of 5G, positioning has been added to 3GPP Release 16 finalized in mid 2020 to realize indoor positioning by leveraging the ultra-high signal resolution empowered by 5G's high bandwidth, multi-point measurements, and multi-access edge computing (MEC) deployment.

The verification was based on Huawei's 5G digital indoor solution LampSite and leading MEC solution. The LampSite units measure the radio signals of 5G devices and work with MEC to analyze the signal characteristics. Based on the results of the analysis, leading algorithms are used to precisely locate 5G devices.

We wrote about Huawei's Lampsite on Telecoms Infrastructure blog last year here.

A group of Ericsson engineers have written a research paper on 5G positioning recently. It's available on arXiv here. Here is the abstract:

In this paper we describe the recent 3GPP Release 16 specification for positioning in 5G networks. It specifies positioning signals, measurements, procedures, and architecture to meet requirements from a plethora of regulatory, commercial and industrial use cases. 5G thereby significantly extends positioning capabilities compared to what was possible with LTE. The indicative positioning performance is evaluated in agreed representative 3GPP simulation scenarios, showing a 90 percentile accuracy of a few meters down to a few decimeters depending on scenarios and assumptions.

Definitely worth a read if you like hardcore technical papers.

Related Posts:

Monday, 2 August 2021

3GPP's 5G-Advanced Workshop Summary

From 28 June to 02 July 2 2021, 3GPP held its first internal workshop on the radio specific content of Release 18, reviewing over 500 company and partner organization’s presentations, to identify topics for the immediate and longer-term commercial needs for:

  • eMBB (evolved Mobile BroadBand);
  • Non-eMBB evolution;
  • Cross-functionalities for both eMBB and non-eMBB driven evolution.

All the documents related to the workshop can be found on the 3GPP website here. The workshop details is available in RWS-210002 while the summary of the RAN Rel-18 workshop is available in RWS-210659.

The following is from 3GPP's news article on 5G-Advanced workshop:

Wanshi Chen, the TSG RAN Chair, summarized that the example areas under each topic serve as a starting point, each subject to further update or removal during the email discussion period - with additional topics still possible, up to the September e-meeting. That RAN#93-e meeting (13-17 September 2021) will see progress on ‘high-level descriptions’ of the objectives for each topic.

List of Topics:

1. Evolution for downlink MIMO, with the following example areas:
  • Further enhancements for CSI (e.g., mobility, overhead, etc.)
  • Evolved handling of multi-TRP (Transmission Reception Points) and multi-beam
  • CPE(customer premises equipment)-specific considerations
2. Uplink enhancements, with the following example areas:
  • >4 Tx operation
  • Enhanced multi-panel/multi-TRP uplink operation
  • Frequency-selective precoding
  • Further coverage enhancements
3. Mobility enhancements, with the following example areas:
  • Layer 1/layer 2 based inter cell mobility
  • DAPS (Dual Active Protocol Stack)/CHO (Conditional HandOver) related improvements
  • FR2 (frequency range 2)-specific enhancements
4. Additional topological improvements (IAB and smart repeaters), with the following example areas:
  • Mobile IAB (Integrated Access Backhaul)/Vehicle mounted relay (VMR)
  • Smart repeater with side control information
5. Enhancements for XR (eXtended Reality), with the following example areas:
  • KPIs/QoS, application awareness operation, and aspects related to power consumption, coverage, capacity, and mobility (Note: only power consumption/coverage/mobility aspects specific to XR)
6. Sidelink enhancements (excluding positioning), with the following example areas:
  • SL enhancements (e.g., unlicensed, power saving enhancements, efficiency enhancements, etc.)
  • SL relay enhancements
  • Co-existence of LTE V2X & NR V2X
7. RedCap evolution (excluding positioning), with the following example areas:
  • New use cases and new UE bandwidths (5MHz?)
  • Power saving enhancements
8. NTN (Non-Terrestrial Networks) evolution
  • Including both NR & IoT (Internet of Things) aspects
9. Evolution for broadcast and multicast services
  • Including both LTE based 5G broadcast and NR MBS (Multicast Broadcast Services)
10. Expanded and improved Positioning, with the following example areas:
  • Sidelink positioning/ranging
  • Improved accuracy, integrity, and power efficiency
  • RedCap positioning
11. Evolution of duplex operation, with the following example areas:
  • Deployment scenarios, including duplex mode (TDD only?)
  • Interference management
12. AI (Artificial Intelligence)/ML (Machine Learning), with the following example areas:
  • Air interface (e.g., Use cases to focus, KPIs and Evaluation methodology, network and UE involvement, etc.)
  • NG-RAN
13. Network energy savings, with the following example areas:
  • KPIs and evaluation methodology, focus areas and potential solutions
14. Additional RAN1/2/3 candidate topics, Set 1:
  • UE power savings
  • Enhancing and extending the support beyond 52.6GHz
  • CA (Carrier Aggregation)/DC (Dual-Connectivity) enhancements (e.g., MR-MC (Multi-Radio/Multi-Connectivity), etc.)
  • Flexible spectrum integration
  • RIS (Reconfigurable Intelligent Surfaces)
  • Others (RAN1-led)
15. Additional RAN1/2/3 candidate topics, Set 2:
  • UAV (Unmanned Aerial Vehicle)
  • IIoT (Industrial Internet of Things)/URLLC (Ultra-Reliable Low-Latency Communication)
  • <5MHz in dedicated spectrum
  • Other IoT enhancements/types
  • HAPS (High Altitude Platform System)
  • Network coding
16. Additional RAN1/2/3 candidate topics, Set 3:
  • Inter-gNB coordination, with the following example areas:
  • Inter-gNB/gNB-DU multi-carrier operation
  • Inter-gNB/gNB-DU multi-TRP operation
  • Enhancement for resiliency of gNB-CU
  • Network slicing enhancements
  • MUSIM (Multiple Universal Subscriber Identity Modules)
  • UE aggregation
  • Security enhancements
  • SON (Self-Organizing Networks)/MDT (Minimization of Drive Test)
  • Others (RAN2/3-led)
17. Potential RAN4 enhancements 

The latest timeline for Release-17/18 is as shown in the diagram above. 

The official 3GPP Release-18 page is here. This link is better to navigate through features in different 3GPP releases.

Related Posts

Saturday, 26 July 2014

Observed Time Difference Of Arrival (OTDOA) Positioning in LTE

Its been a while I wrote anything on Positioning. The network architecture for the positioning entities can be seen from my old blog post here
Qualcomm has recently released a whitepaper on the OTDOA (Observed Time Difference Of Arrival) positioning. Its quite a detailed paper with lots of technical insights.

There is also signalling and example of how reference signals are used for OTDOA calculation. Have a look at the whitepaper for detail, embedded below.



Tuesday, 26 October 2021

An Early View of 3GPP Release-18 5G-Advanced Topics

5G is hot at the moment. While the operators are busy rolling out the networks based on Release-15/16 features, 3GPP is working on finalising Release-17 specifications and laying the foundations for Rel-18.

The latest issue of 3GPP Highlights magazine (I prefer the PDF) contains a lot of valuable technical content, in addition to many other articles. The technical content includes:

  • An early view of the RAN Topics for 5G-Advanced
  • 5G Advanced in the Making – The TSG SA approach to Release 18
  • Application Enablement Standards in 3GPP – Maximizing the potential of 5G!
  • RAN3 flourishing in this time of change
  • Enhanced support of Industrial IoT in the 5G System (Rel-17)
  • Autonomous Network standardization in WG SA5
  • Rel-17 Edge Computing and Network Slicing charging (WG SA 5)
  • Media Production over 5G NPN

While I am not going into too much detail here, I want to highlight the 5G-Advanced topics that will be under discussion over the next couple of months. The final list will be approved by 3GPP TSGs SA, RAN and CT in December 2021.

Dr. Wanshi Chen, 3GPP TSG RAN Chair provided an early view of the RAN topics for 5G-Advanced. 

Topics Under Discussion

As well as taking a tentative decision on an 18-month duration for Release 18, the RAN workshop endorsed a list of topics for subsequent email discussions. Some of the topics in the following list also have a set of example areas, serving as a starting point for further refinement:

  • Evolution for downlink MIMO, with the following example areas:
    • Further enhancements for CSI (e.g., mobility, overhead, etc.)
    • Evolved handling of multi-TRP (Transmission Reception Points) and multi-beam
    • CPE (customer premises equipment) -specific considerations
  • Uplink enhancements, with the following example areas:
    • >4 Tx operation
    • Enhanced multi-panel/multi-TRP uplink operation
    • Frequency-selective precoding
    • Further coverage enhancements
  • Mobility enhancements, with the following example areas:
    • Layer 1/layer 2 based inter cell mobility
    • DAPS (Dual Active Protocol Stack)/CHO (Conditional HandOver) related improvements
    • FR2 (frequency range 2)-specific enhancements
  • Additional topological improvements (IAB and smart repeaters), with the following example areas:
    • Mobile IAB (Integrated Access Backhaul)/Vehicle mounted relay (VMR)
    • Smart repeater with side control information
  • Enhancements for XR (eXtended Reality), with the following example areas:
    • KPIs/QoS, application awareness operation, and aspects related to power consumption, coverage, capacity, and mobility
      • Note: only power consumption/coverage/mobility aspects specific to XR
  • Sidelink enhancements (excluding positioning), with the following example areas:
    • SL enhancements (e.g., unlicensed, power saving enhancements, efficiency enhancements, etc.)
    • SL relay enhancements
    • Co-existence of LTE V2X & NR V2X
  • RedCap evolution (excluding positioning), with the following example areas:
    • New use cases and new UE bandwidths (5MHz?)
    • Power saving enhancements
  • NTN (Non-Terrestrial Networks) evolution
    • Including both NR & IoT (Internet of Things) aspects
  • Evolution for broadcast and multicast services
    • Including both LTE based 5G broadcast and NR MBS (Multicast Broadcast Services)
  • Expanded and improved Positioning, with the following example areas:
    • Sidelink positioning/ranging
    • Improved accuracy, integrity, and power efficiency
    • RedCap positioning
  • Evolution of duplex operation, with the following example areas:
    • Deployment scenarios, including duplex mode (TDD only?)
    • Interference management
  • AI (Artificial Intelligence)/ML (Machine Learning), with the following example areas:
    • Air interface (e.g., Use cases to focus, KPIs and Evaluation methodology, network and UE involvement, etc.)
    • NG-RAN
  • Network energy savings, with the following example areas:
    • KPIs and evaluation methodology, focus areas and potential solutions
  • Additional RAN1/2/3 candidate topics, Set 1:
    • UE power savings
    • Enhancing and extending the support beyond 52.6GHz
    • CA (Carrier Aggregation)/DC (Dual-Connectivity) enhancements (e.g., MR-MC (Multi-Radio/Multi-Connectivity), etc.)
    • Flexible spectrum integration
    • RIS (Reconfigurable Intelligent Surfaces)
    • Others (RAN1-led)
  • Additional RAN1/2/3 candidate topics, Set 2:
    • UAV (Unmanned Aerial Vehicle)
    • IIoT (Industrial Internet of Things)/URLLC (Ultra-Reliable Low-Latency Communication)
    • <5MHz in dedicated spectrum
    • Other IoT enhancements/types
    • HAPS (High Altitude Platform System)
    • Network coding
  • Additional RAN1/2/3 candidate topics, Set 3:
    • Inter-gNB coordination, with the following example areas:
      • Inter-gNB/gNB-DU multi-carrier operation
      • Inter-gNB/gNB-DU multi-TRP operation
      • Enhancement for resiliency of gNB-CU
    • Network slicing enhancements
    • MUSIM (Multiple Universal Subscriber Identity Modules)
    • UE aggregation
    • Security enhancements
    • SON (Self-Organizing Networks)/MDT (Minimization of Drive Test)
    • Others (RAN2/3-led)
  • Potential RAN4 enhancements

Dr. Georg Mayer, 3GPP TSG SA Chair provides the TSG SA approach to 3GPP Release-18

The candidate items for Rel-18 include:

  • Immersive Media and Virtual/Artificial/Extended Reality (XR) Media support in Working Group (WG) SA4 and WG SA2.
  • New work areas for Internet of Things (e.g. passive IoT (WG SA2) and application capability exposure for IoT platforms (WG SA6)).
  • Proposals to for Artificial Intelligence and Machine Learning Services Transport and Management (WGs SA2, SA5).
  • Concepts for integration and migration of existing vertical infrastructure, e.g. for railway networks (WG SA6).
  • Examples for proposed enhancements to existing 3GPP services and functionalities include:
    • Network Slicing (WGs SA2, SA5)
    • Edge Computing (WGs SA2, SA5, SA6)
    • Autonomous Networks (WG SA5)
    • Service Based Architecture (WGs SA2, SA5)
    • Northbound APIs (WG SA6)
    • Non-Public Networks (WG SA2)
    • Satellite 5G Networks (WG SA2)
    • Drone support (WG SA2)
    • 5G Multicast and Broadcast (WG SA2)
    • Location Services (WG SA2, SA6)
    • Management Data Analytics (WG SA5)
    • Mission Critical Services (WG SA6)

None of these features are final but we will know in the next few months what will be included as part of Rel-18 and what won't. In the meantime, do check out the latest issue of 3GPP Highlights here.

Related Posts

Wednesday, 14 August 2024

3GPP Release 18 Description and Summary of Work Items

The first official release of 3GPP TR 21.918: "Release 18 Description; Summary of Rel-18 Work Items" has been published. It's the first official version of 5G-Advanced. Quoting from the report: 

Release 18 specifies further improvements of the 5G-Avanced system. 

These improvements consist both in enhancements of concepts/Features introduced in the previous Releases and in the introduction of new topics.

Some of the key improvements are:

  • a further integration of the Satellite (NTN) access (introduced in Rel-17) in the 5G System (5GS), 
  • a more efficient support of Internet of Things (IoT), Machine-Type Communication (MTC), including by satellite coverage
  • and also several aspects of proximity communication and location (Sidelink, Proximity, Location and Positioning, better support of the industrial needs (Verticals, Industries, Factories, Northbound API), Multicast and Broadcast Services (MBS), Network Slicing or Uncrewed Aerial Vehicles (UAV).

As for the new topics, some of the key aspects are:

  • Energy Efficiency (EE)
  • Artificial Intelligence (AI)/Machine Learning (ML)
  • eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive communications

The following list is from the v1.0.0 table of contents to make it easier to find the list of topics. If it interests you, download the latest version technical report from the directory here.

5 Satellite / Non-Terrestrial Network (NTN)
5.1 General aspects
5.1.1 User plane: “5G system with satellite backhaul”
5.1.2 Discontinuous coverage: “Satellite access Phase 2”
5.1.3 Radio: "NR NTN enhancements"
5.1.4 Charging and Management aspects of Satelite
5.2 Specific aspects
5.2.1 IoT (Internet of Things) NTN enhancements
5.2.2 Guidelines for Extra-territorial 5G Systems
5.2.3 5G system with satellite access to Support Control and/or Video Surveillance
5.2.4 Introduction of the satellite L-/S-band for NR
5.2.5 Other band-related aspects of satellite

6 Internet of Things (IoT), Machine-Type Communication (MTC)
6.1 Personal IoT and Residential networks
6.2 Enhanced support of Reduced Capability (RedCap) NR devices
6.3 NR RedCap UE with long eDRX for RRC_INACTIVE State
6.4 Application layer support for Personal IoT Network
6.5 5G Timing Resiliency System
6.6 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
6.7 Adding new NR FDD bands for RedCap in Rel-18
6.8 Signal level Enhanced Network Selection
6.9 IoT NTN enhancements

7 Energy Efficiency (EE)
7.1 Enhancements of EE for 5G Phase 2
7.2 Network energy savings for NR
7.3 Smart Energy and Infrastructure

8 Uncrewed Aerial Vehicles (UAV), UAS, UAM
8.1 Architecture for UAV and UAM Phase 2
8.2 Architecture for UAS Applications, Phase 2
8.3 NR support for UAV
8.4 Enhanced LTE Support for UAV

9 Sidelink, Proximity, Location and Positioning
9.1 5GC LoCation Services - Phase 3
9.2 Expanded and improved NR positioning
9.3 NR sidelink evolution
9.4 NR sidelink relay enhancements
9.5 Proximity-based Services in 5GS Phase 2
9.6 Ranging-based Service and sidelink positioning
9.7 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
9.8 5G-enabled fused location service capability exposure

10 Verticals, Industries, Factories, Northbound API
10.1 Low Power High Accuracy Positioning for industrial IoT scenarios
10.2 Application enablement aspects for subscriber-aware northbound API access
10.3 Smart Energy and Infrastructure
10.4 Generic group management, exposure and communication enhancements
10.5 Service Enabler Architecture Layer for Verticals Phase 3
10.6 SEAL data delivery enabler for vertical applications
10.7 Rel-18 Enhancements of 3GPP Northbound and Application Layer interfaces and APIs
10.8 Charging Aspects of B2B
10.9 NRF API enhancements to avoid signalling and storing of redundant data
10.10 GBA_U Based APIs
10.11 Other aspects

11 Artificial Intelligence (AI)/Machine Learning (ML)
11.1 AI/ML model transfer in 5GS
11.2 AI/ML for NG-RAN
11.3 AI/ML management & charging
11.4 NEF Charging enhancement to support AI/ML in 5GS

12 Multicast and Broadcast Services (MBS)
12.1 5G MBS Phase 2
12.2 Enhancements of NR MBS
12.3 UE pre-configuration for 5MBS
12.4 Other MBS aspects

13 Network Slicing
13.1 Network Slicing Phase 3
13.2 Enhancement of NSAC for maximum number of UEs with at least one PDU session/PDN connection
13.3 Enhancement of Network Slicing UICC application for network slice-specific authentication and authorization
13.4 Charging Aspects of Network Slicing Phase 2
13.5 Charging Aspects for NSSAA
13.6 Charging enhancement for Network Slice based wholesale in roaming
13.7 Network Slice Capability Exposure for Application Layer Enablement
13.8 Other slice aspects

14 eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive
14.1 XR (eXtended Reality) enhancements for NR
14.2 Media Capabilities for Augmented Reality
14.3 Real-time Transport Protocol Configurations
14.4 Immersive Audio for Split Rendering Scenarios  (ISAR)
14.5 Immersive Real-time Communication for WebRTC
14.6 IMS-based AR Conversational Services
14.7 Split Rendering Media Service Enabler
14.8 Extended Reality and Media service (XRM)
14.9 Other XR/AR/VR items

15 Mission Critical and emergencies
15.1 Enhanced Mission Critical Push-to-talk architecture phase 4
15.2 Gateway UE function for Mission Critical Communication
15.3 Mission Critical Services over 5MBS
15.4 Mission Critical Services over 5GProSe
15.5 Mission Critical ad hoc group Communications
15.6 Other Mission Critical aspects

16 Transportations (Railways, V2X, aerial)
16.1 MBS support for V2X services
16.2 Air-to-ground network for NR
16.4 Interconnection and Migration Aspects for Railways
16.5 Application layer support for V2X services; Phase 3
16.6 Enhanced NR support for high speed train scenario in frequency range 2 (FR2)

17 User Plane traffic and services
17.1 Enhanced Multiparty RTT
17.2 5G-Advanced media profiles for messaging services
17.3 Charging Aspects of IMS Data Channel
17.4 Evolution of IMS Multimedia Telephony Service
17.5 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 3
17.6 UPF enhancement for Exposure and SBA
17.7 Tactile and multi-modality communication services
17.8 UE Testing Phase 2
17.9 5G Media Streaming Protocols Phase 2
17.10 EVS Codec Extension for Immersive Voice and Audio Services
17.11 Other User Plane traffic and services items

18 Edge computing
18.1 Edge Computing Phase 2
18.2 Architecture for enabling Edge Applications Phase 2
18.3 Edge Application Standards in 3GPP and alignment with External Organizations

19 Non-Public Networks
19.1 Non-Public Networks Phase 2
19.2 5G Networks Providing Access to Localized Services
19.3 Non-Public Networks Phase 2

20 AM and UE Policy
20.1 5G AM Policy
20.2 Enhancement of 5G UE Policy
20.3 Dynamically Changing AM Policies in the 5GC Phase 2
20.4 Spending Limits for AM and UE Policies in the 5GC
20.5 Rel-18 Enhancements of UE Policy

21 Service-based items
21.1 Enhancements on Service-based support for SMS in 5GC
21.2 Service based management architecture
21.3 Automated certificate management in SBA
21.4 Security Aspects of the 5G Service Based Architecture Phase 2
21.5 Service Based Interface Protocol Improvements Release 18

22 Security-centric aspects
22.1 IETF DTLS protocol profile for AKMA and GBA
22.2 IETF OSCORE protocol profiles for GBA and AKMA
22.3 Home network triggered primary authentication
22.4 AKMA phase 2
22.5 5G Security Assurance Specification (SCAS) for the Policy Control Function (PCF)
22.6 Security aspects on User Consent for 3GPP services Phase 2
22.7 SCAS for split-gNB product classes
22.8 Security Assurance Specification for AKMA Anchor Function Function (AAnF)
22.9 Other security-centric items

23 NR-only items
23.1 Not band-centric
23.1.1 NR network-controlled repeaters
23.1.2 Enhancement of MIMO OTA requirement for NR UEs
23.1.3 NR MIMO evolution for downlink and uplink
23.1.4 Further NR mobility enhancements
23.1.5 In-Device Co-existence (IDC) enhancements for NR and MR-DC
23.1.6 Even Further RRM enhancement for NR and MR-DC
23.1.7 Dual Transmission Reception (TxRx) Multi-SIM for NR
23.1.8 NR support for dedicated spectrum less than 5MHz for FR1
23.1.9 Enhancement of NR Dynamic Spectrum Sharing (DSS)
23.1.10 Multi-carrier enhancements for NR
23.1.11 NR RF requirements enhancement for frequency range 2 (FR2), Phase 3
23.1.12 Requirement for NR frequency range 2 (FR2) multi-Rx chain DL reception
23.1.13 Support of intra-band non-collocated EN-DC/NR-CA deployment
23.1.14 Further enhancements on NR and MR-DC measurement gaps and measurements without gaps
23.1.15 Further RF requirements enhancement for NR and EN-DC in frequency range 1 (FR1)
23.1.16 Other non-band related items
23.2 Band-centric
23.2.1 Enhancements of NR shared spectrum bands
23.2.2 Addition of FDD NR bands using the uplink from n28 and the downlink of n75 and n76
23.2.3 Complete the specification support for BandWidth Part operation without restriction in NR
23.2.4 Other NR band related topics

24 LTE-only items
24.1 High Power UE (Power Class 2) for LTE FDD Band 14
24.2 Other LTE-only items

25 NR and LTE items
25.1 4Rx handheld UE for low NR bands (<1GHz) and/or 3Tx for NR inter-band UL Carrier Aggregation (CA) and EN-DC
25.2 Enhancement of UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
25.3 Other items

26 Network automation
26.1 Enablers for Network Automation for 5G phase 3
26.2 Enhancement of Network Automation Enablers

27 Other aspects
27.1 Support for Wireless and Wireline Convergence Phase 2
27.2 Secondary DN Authentication and authorization in EPC IWK cases
27.3 Mobile IAB (Integrated Access and Backhaul) for NR
27.4 Further NR coverage enhancements
27.5 NR demodulation performance evolution
27.6 NR channel raster enhancement
27.7 BS/UE EMC enhancements for NR and LTE
27.8 Enhancement on NR QoE management and optimizations for diverse services
27.9 Additional NRM features phase 2
27.10 Further enhancement of data collection for SON (Self-Organising Networks)/MDT (Minimization of Drive Tests) in NR and EN-DC
27.11 Self-Configuration of RAN Network Entities
27.12 Enhancement of Shared Data ID and Handling
27.13 Message Service within the 5G system Phase 2
27.14 Security Assurance Specification (SCAS) Phase 2
27.15 Vehicle-Mounted Relays
27.16 SECAM and SCAS for 3GPP virtualized network products
27.17 SECAM and SCAS for 3GPP virtualized network products
27.18 MPS for Supplementary Services
27.19 Rel-18 enhancements of session management policy control
27.20 Seamless UE context recovery
27.21 Extensions to the TSC Framework to support DetNet
27.22 Multiple location report for MT-LR Immediate Location Request for regulatory services
27.23 Enhancement of Application Detection Event Exposure
27.24 General Support of IPv6 Prefix Delegation in 5GS
27.25 5G Timing Resiliency System
27.26 MPS when access to EPC/5GC is WLAN
27.27 Data Integrity in 5GS
27.28 Security Enhancement on RRCResumeRequest Message Protection

28 Administration, Operation, Maintenance and Charging-centric Features
28.1 Introduction
28.2 Intent driven Management Service for Mobile Network phase 2
28.3 Management of cloud-native Virtualized Network Functions
28.4 Management of Trace/MDT phase 2
28.5 Security Assurance Specification for Management Function (MnF)
28.6 5G performance measurements and KPIs phase 3
28.7 Access control for management service
28.8 Management Aspects related to NWDAF
28.9 Management Aspect of 5GLAN
28.10 Charging Aspects of TSN
28.11 CHF Distributed Availability
28.12 Management Data Analytics phase 2
28.12 5G System Enabler for Service Function Chaining
28.13 Other Management-centric items

29 Other Rel-18 Topics

If you find them useful then please get the latest document from here.

Related Posts

Thursday, 19 December 2024

Evolution and Impact of Cellular Location Services (LCS)

Location Services (LCS) have been standardized by 3GPP across all major generations of cellular technology, including 2G (GSM), 3G (UMTS), 4G (LTE), and 5G. These services enable applications to determine the geographical location of mobile devices, facilitating crucial functions such as emergency calls, navigation, and location-based advertising. The consistent adoption of standardized protocols ensures interoperability, scalability, and reliability, empowering mobile operators and device manufacturers to implement location services in a globally consistent manner.

The evolution of LCS technology has seen remarkable advancements with each generation of cellular networks. Early implementations in 2G and 3G relied on basic techniques such as Cell-ID, Timing Advance, and triangulation, which offered limited accuracy and were suitable only for rudimentary use cases. 

The introduction of LTE in 3GPP Release 9 marked a significant improvement, integrating support for regulatory services like emergency call localization and commercial applications such as mapping. LTE networks commonly employ global navigation satellite systems (GNSS), like GPS, to determine locations. However, alternative methods using the LTE air interface are crucial in scenarios where GNSS signals are obstructed, such as indoors or in dense urban environments. An LTE network can support horizontal positioning accuracy of 50m for 80% of mobiles and a vertical positioning accuracy of 5m and an end-to-end latency of 30 seconds.


In 5G, the introduction of high-bandwidth, low-latency communication and new architectural enhancements allows for even more accurate and responsive location services. These improvements support critical use cases like autonomous vehicles, smart cities, and industrial IoT applications. 

5G networks have further improved LCS with high-bandwidth, low-latency communication and architectural enhancements. These innovations enable critical applications like autonomous vehicles, smart cities, and industrial IoT. In Release 15, 5G devices support legacy LTE location protocols through the Gateway Mobile Location Centre (GMLC). From Release 16, the Network Exposure Function (NEF) streamlines location requests for modern applications. A 5G network is expected to deliver a horizontal positioning accuracy of 3m indoors and 10m outdoors, a vertical positioning accuracy of 3m in both environments and an end-to-end latency of one second.

The standardization efforts of 3GPP have ensured that location services meet stringent requirements for accuracy, privacy, and security. Emergency services, for instance, benefit from these standards through Enhanced 911 (E911) in the United States and similar mandates globally, which require precise location reporting for mobile callers. Furthermore, standardization fosters innovation by providing a common foundation on which developers can create new location-based services and applications. As cellular networks continue to evolve, 3GPP’s standardized LCS will remain a cornerstone in bridging connectivity with the physical world, enabling smarter, safer, and more connected societies.

Mpirical recently shared a video exploring the concepts and drivers of Location Services (LCS). It's embedded below:

If you want to learn more about LCS, check out Mpirical's training course on this topic which seeks to provide an end to end exploration of the techniques and technologies involved, including the driving factors, standardization, requirements, architectural elements, protocols and protocol stacks, 2G-5G LCS operation and location finding techniques (overview and specific examples).

Mpirical is a leading provider of telecoms training, specializing in mobile and wireless technologies such as 5G, LTE, and IoT. They boast a course catalogue of wide ranging topics and technologies for all levels, with each course thoughtfully broken down into intuitive learning modules. 

Related Posts

Saturday, 24 December 2022

3GPP Release 17 Description and Summary of Work Items

An updated (looks final) version of 3GPP TR 21.917: Release 17 Description; Summary of Rel-17 Work Items was added to the archive earlier this month. It is a fantastic summary of all the Rel-17 features. Quoting the executive summary from the specs:

Release 17 is dedicated to consolidate and enhance the concepts and functionalities introduced in the previous Releases, while introducing a small number of brand new Features.

The improvements relate to all the key areas of the previous Releases: services to the industry (the "verticals"), including positioning, private network, etc.; improvements for several aspects of 5G supporting Internet of Things (IoT), both in the Core Network and in the Access Network, of proximity (direct) communications between mobiles, in particular in the context of autonomous driving (V2X), in several media aspects of the user plane related to the entertainment industry (codec, streaming, broadcasting) and also of the support of Mission Critical communications. Furthermore, a number of network functionalities have been improved, e.g. for slicing, traffic steering and Edge-computing.

The Radio interface and the Access Network have been significantly improved too (MIMO, Repeaters, 1024QAM modulation for downlink, etc.). While most of the improvements target 5G/NR radio access (or are access-agnostic), some improvements are dedicated to 4G/LTE access. Such improvements are clearly identified in the title and in the chapters where they appear.

Note: To avoid terminology such as "even further improvements of…", the successive enhancements are now referred to as "Phase n": "phase 2" refers to the first series of enhancements, "Phase 3" to the enhancements of the enhancements, etc. In this transition Release, the "Phase n" way of referring to successive enhancements has not always been used consistently nor enforced.

As for the new Features, the main new Feature of this Release is the support of satellite access, and a dedicated chapter covers this topic.

Note that the classifications, groupings and order of appearance of the Features in this document reflect a number of choices by the editor as there is no "3GPP endorsement" for classification/order. This Executive Summary has also been written by the editor and represents his view.

The following list is from the table of contents to provide you an idea and if it interests you, download the technical report here

5 Integration of satellite components in the 5G architecture
5.1 General traffic (non-IoT)
5.1.1 SA and CT aspects
5.1.2 RAN aspects
5.2 NB-IoT/eMTC support for Non-Terrestrial Networks

6 Services to "verticals"
6.1 Introduction
6.2 Generic functionalities, to all verticals
6.2.1 Network and application enablement for verticals
6.2.1.1 Enhanced Service Enabler Architecture Layer for Verticals
6.2.1.2 Enhancements for Cyber-physical control Applications in Vertical domains (eCAV)
6.2.1.3 Enhancements of 3GPP Northbound Interfaces and APIs
6.2.2 Location and positioning
6.2.2.1 RAN aspects of NR positioning enhancements
6.2.2.2 Enhancement to the 5GC LoCation Services-Phase 2
6.2.3 Support of Non-Public and Private Networks
6.2.3.1 Enhanced support of Non-Public Networks
6.2.3.2 Enhancement of Private Network support for NG-RAN
6.3 Specific verticals support
6.3.1 Railways
6.3.1.1 Enhancements to Application Architecture for the Mobile Communication System for Railways Phase 2
6.3.1.2 Enhanced NR support for high speed train scenario (NR_HST)
6.3.1.2.1 NR_HST for FR1
6.3.1.2.2 NR_HST for FR2
6.3.1.3 NR Frequency bands for Railways
6.3.1.3.1 Introduction of 900MHz NR band for Europe for Rail Mobile Radio (RMR)
6.3.1.3.2 Introduction of 1900MHz NR TDD band for Europe for Rail Mobile Radio (RMR)
6.3.2 Mission Critical (MC) and priority service
6.3.2.1 Mission Critical Push-to-talk Phase 3
6.3.2.2 Mission Critical Data Phase 3
6.3.2.3 Mission Critical security Phase 2
6.3.2.4 Mission Critical Services over 5GS
6.3.2.5 Enhanced Mission Critical Communication Interworking with Land Mobile Radio Systems (CT aspects)
6.3.2.6 Mission Critical system migration and interconnection (CT aspects)
6.2.3.7 MC services support on IOPS mode of operation
6.3.2.8 MCPTT in Railways
6.3.2.9 Multimedia Priority Service (MPS) Phase 2
6.3.3 Drone/UAS/UAV/EAV
6.3.3.1 Introduction
6.3.3.2 General aspects
6.3.3.2.1 5G Enhancement for UAVs
6.3.3.2.2 Application layer support for UAS
6.3.3.3 Remote Identification of UAS
6.3.4 Media production, professional video and Multicast-Broadcast
6.3.4.1 Communication for Critical Medical Applications
6.3.4.2 Audio-Visual Service Production
6.3.4.3 Multicast-Broadcast Services (MBS)
6.3.4.3.1 Multicast-broadcast services in 5G
6.3.4.3.2 NR multicast and broadcast services
6.3.4.3.3 5G multicast and broadcast services
6.3.4.3.4 Security Aspects of Enhancements for 5G MBS
6.3.4.4 Study on Multicast Architecture Enhancements for 5G Media Streaming
6.3.4.5 5G Multicast-Broadcast User Service Architecture and related 5GMS Extensions
6.3.4.6 Other media and broadcast aspects
6.4 Other "verticals" aspects

7 IoT, Industrial IoT, REDuced CAPacity UEs and URLLC
7.1 NR small data transmissions in INACTIVE state
7.2 Additional enhancements for NB-IoT and LTE-MTC
7.3 Enhanced Industrial IoT and URLLC support for NR
7.4 Support of Enhanced Industrial IoT (IIoT)
7.5 Support of reduced capability NR devices
7.6 IoT and 5G access via Satellite/Non-Terrestrial (NTN) link
7.7 Charging enhancement for URLLC and CIoT
7.8 Messaging in 5G

8 Proximity/D2D/Sidelink related and V2X
8.1 Enhanced Relays for Energy eFficiency and Extensive Coverage
8.2 Proximity-based Services in 5GS
8.3 Sidelink/Device-to-Device (D2D)
8.3.1 NR Sidelink enhancement
8.3.2 NR Sidelink Relay
8.4 Vehicle-to-Everything (V2X)
8.4.1 Support of advanced V2X services - Phase 2
8.4.2 Enhanced application layer support for V2X services

9 System optimisations
9.1 Edge computing
9.1.1 Enhancement of support for Edge Computing in 5G Core network
9.1.2 Enabling Edge Applications
9.1.3 Edge Computing Management
9.2 Slicing
9.2.1 Network Slicing Phase 2 (CN and AN aspects)
9.2.2 Network Slice charging based on 5G Data Connectivity
9.3 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 2
9.4 Self-Organizing (SON)/Autonomous Network
9.4.1 Enhancement of data collection for SON/MDT in NR and EN-DC
9.4.2 Autonomous network levels
9.4.3 Enhancements of Self-Organizing Networks (SON)
9.5 Minimization of service Interruption
9.6 Policy and Charging Control enhancement
9.7 Multi-(U)SIM
9.7.1 Support for Multi-USIM Devices (System and CN aspects)
9.7.2 Support for Multi-SIM Devices for LTE/NR

10 Energy efficiency, power saving
10.1 UE power saving enhancements for NR
10.2 Enhancements on EE for 5G networks
10.3 Other energy efficiency aspects

11 New Radio (NR) physical layer enhancements
11.1 Further enhancements on MIMO for NR
11.2 MIMO Over-the-Air requirements for NR UEs
11.3 Enhancements to Integrated Access and Backhaul for NR
11.4 NR coverage enhancements
11.5 RF requirements for NR Repeaters
11.6 Introduction of DL 1024QAM for NR FR1
11.7 NR Carrier Aggregation
11.7.1 NR intra band Carrier Aggregation
11.7.2 NR inter band Carrier Aggregation
11.8 NR Dynamic Spectrum Sharing
11.9 Increasing UE power high limit for CA and DC
11.10 RF requirements enhancement for NR FR1
11.11 RF requirements further enhancements for NR FR2
11.12 NR measurement gap enhancements
11.13 UE RF requirements for Transparent Tx Diversity for NR
11.14 NR RRM further enhancement
11.15 Further enhancement on NR demodulation performance
11.16 Bandwidth combination set 4 (BCS4) for NR
11.17 Other NR related activities
11.18 NR new/modified bands
11.18.1 Introduction of 6GHz NR licensed bands
11.18.2 Extending current NR operation to 71 GHz
11.18.3 Other NR new/modified bands

12. New Radio (NR) enhancements other than layer 1
12.1 NR Uplink Data Compression (UDC)
12.2 NR QoE management and optimizations for diverse services

13 NR and LTE enhancements
13.1 NR and LTE layer 1 enhancements
13.1.1 High-power UE operation for fixed-wireless/vehicle-mounted use cases in LTE bands and NR bands
13.1.2 UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
13.1.3 Other Dual Connectivity and Multi-RAT enhancements
13.2 NR and LTE enhancements other than layer 1
13.2.1 Enhanced eNB(s) architecture evolution for E-UTRAN and NG-RAN
13.2.2 Further Multi-RAT Dual-Connectivity enhancements
13.2.3 Further Multi-RAT Dual-Connectivity enhancements

14 LTE-only enhancements
14.1 LTE  inter-band Carrier Aggregation
14.2 LTE new/modified bands
14.2.1 New bands and bandwidth allocation for 5G terrestrial broadcast - part 1
14.3 Other LTE bands-related aspects

15 User plane improvements
15.1 Immersive Teleconferencing and Telepresence for Remote Terminals
15.2 8K Television over 5G
15.3 5G Video Codec Characteristics
15.4 Handsets Featuring Non-Traditional Earpieces
15.5 Extension for headset interface tests of UE
15.6 Media Streaming AF Event Exposure
15.7 Restoration of PDN Connections in PGW-C/SMF Set
15.8 Other media and user plane aspects

16 Standalone Security aspects
16.1 Introduction
16.2 Authentication and key management for applications based on 3GPP credential in 5G (AKMA)
16.3 AKMA TLS protocol profiles
16.4 User Plane Integrity Protection for LTE
16.5 Non-Seamless WLAN offload authentication in 5GS
16.6 Generic Bootstrapping Architecture (GBA) into 5GC
16.7 Security Assurance Specification for 5G
16.8 Adapting BEST for use in 5G networks
16.9 Other security aspects

17 Signalling optimisations
17.1 Enhancement for the 5G Control Plane Steering of Roaming for UE in Connected mode
17.2 Same PCF selection for AMF and SMF
17.3 Enhancement of Inter-PLMN Roaming
17.4 Enhancement on the GTP-U entity restart
17.5 Packet Flow Description management enhancement
17.6 PAP/CHAP protocols usage in 5GS
17.7 Start of Pause of Charging via User Plane
17.8 Enhancement of Handover Optimization
17.9 Restoration of Profiles related to UDR
17.10 IP address pool information from UDM
17.11 Dynamic management of group-based event monitoring
17.12 Dynamically Changing AM Policies in the 5GC
17.13 Other aspects

18 Standalone Management Features
18.1 Introduction
18.2 Enhanced Closed loop SLS Assurance
18.3 Enhancement of QoE Measurement Collection
18.4 Plug and connect support for management of Network Functions
18.5 Management of MDT enhancement in 5G
18.6 Management Aspects of 5G Network Sharing
18.7 Discovery of management services in 5G
18.8 Management of the enhanced tenant concept
18.9 Intent driven management service for mobile network
18.10 Improved support for NSA in the service-based management architecture
18.11 Additional Network Resource Model features
18.12  Charging for Local breakout roaming of data connectivity
18.13 File Management
18.14 Management data collection control and discovery
18.15 Other charging and management aspects

If you find them useful then please get the latest document from here.

Related Posts