Showing posts with label Internet of Things. Show all posts
Showing posts with label Internet of Things. Show all posts

Thursday, 14 September 2017

NB-IoT based smart bicycle lock

Huawei (see here and here) has partnered with China Telecom and Bike sharing company called Ofo.

ofo developed an IoT smart lock based on NB-IoT technology that lowers power consumption, enables wide coverage, and slashes system resource delays at low cost. NB-IoT lets ofo ensure it has bikes located at key locations when commuter demand is highest. Meanwhile, bikes can be unlocked in less than a second. Both improvements have greatly boosted user satisfaction.

ofo and its partners added key technologies to ofo’s own platform. These included the commercial network provided by China Telecom, and Huawei’s intelligent chip-based NB-IoT solution. When launching its NB-IoT solution earlier this year, ofo founder and CEO Dai Wei said that the cooperation between ofo, Huawei, and China Telecom is a “mutually beneficial joint force of three global leading enterprises.”

At the core is Huawei’s IoT solution, which includes smart chips, networking, and an IoT platform. The solution provides strong coverage in poor-signal areas and a network capacity that’s more than one hundred times stronger than standard terminals. The payment process has dropped from 25 seconds to less than 5, while battery life has been lengthened from 1 or 2 months to more than 2 years, saving costs and reducing the need for frequent maintenance.

ofo’s cooperation with Huawei on NB-IoT smart locks bodes well for improving the industry as whole. Huawei’s technology optimizes lifecycle management for locks, while the sensors on the locks collect information such as equipment status, user data, and operating data. They connect the front- and back-end industrial chains to achieve intelligent business management, enable the bikes to be located in hot spots, facilitate rapid maintenance, and boost marketing and value-added services.

This video gives an idea of how this works:

As per Mobile World Live:

Ofo co-founder Xue Ding said during a presentation the high power efficiency and huge capacity of NB-IoT make the technology ideal to deliver its smart locks, which are really the brains of its operations.

The company offers what is termed station free pushbike hire, meaning bikes can be collected and deposited from any legal parking spot. Users can locate bikes using their smartphone, and unlock it by scanning a barcode.

However, the process can be interrupted by mobile network congestion or if signals are weak – for example in remote areas: “Using NB-IoT, users will not be stuck because of inadequate capacity,” Xue said.
Xiang Huangmei, a VP at China Telecom’s Beijing branch, said the low power consumption of the NB-IoT chip in the lock means the battery will last eight years to ten years, so it will never need to be replaced during the standard lifecycle of an Ofo bike.

The NB-IoT network, deployed on the 800MHz band, offers good indoor and outdoor coverage, the VP said citing car parks as an example. One base station can support 100,000 devices over an area of 2.5 square-km.

Finally, to know which operator is supporting which IoT technology, see the IoT tracker here.

Sunday, 27 August 2017

Bluetooth 5 for IoT

Bluetooth 5 (not 5.0 - to simplify marketing messages and communication) was released last year. The main features being 2x Faster, 4x Range (Bluetooth 4 - 50m outdoors, 10m Indoors; Bluetooth 5 - 200m outdoors, 40m indoors) & 8x Data.
I like this above slide by Robin Heydon, Qualcomm from a presentation he gave in CW (Cambridge Wireless) earlier this year. What is highlights is that Bluetooth 5 is Low Energy (LE) like its predecessor 4.0.For anyone interested, a good comparison of 5 vs 4.2 is available here.

In addition, Mesh support is now available for Bluetooth. I assume that this will work with Bluetooth 4.0 onwards but it would probably only make sense from Bluetooth 5 due to support for reasonable range.

The Bluetooth blog has a few posts on Mesh (see here, here and here). I like this simple introductory video below.

This recent article by Geoff Varral on RTT says the following (picture from another source):

Long distance Bluetooth can also be extended with the newly supported mesh protocol.

This brings Bluetooth into direct competition with a number of other radio systems including 802.15,4 based protocols such as Zigbee, LoRa, Wireless-M (for meter reading), Thread and 6 LowPAN (IPV6 over local area networks. 802.11 also has a mesh protocol and long distance ambitions including 802.11ah Wi-Fi in the 900 MHz ISM band. It also moves Bluetooth into the application space targeted by LTE NB IOT and LTE M though with range limitations.

There are some interesting design challenges implied by 5.0. The BLE specification is inherently less resilient to interference than Classic or EDR Bluetooth. This is because the legacy seventy eight X 1 MHz channels within the 20 MHz 2.4 GHz pass band are replaced with thirty nine two MHz channels with three fixed non hopping advertising channels in the middle and edge of the pass band.

These have to withstand high power 20 MHz LTE TDD in Band 40 (below the 2.4 GHz pass band) and high power 20 MHz LTE TDD in band 41 above the pass band (and Band 7 LTE FDD). This includes 26 dBm high power user equipment.

The coexistence of Bluetooth, Wi-Fi and LTE has been intensively studied and worked on for over ten years and is now managed with surprising effectiveness within a smart phone through a combination of optimised analogue and digital filtering (SAW and FBAR filters) and time domain interference mitigation based on a set of  industry standard wireless coexistence protocols.

The introduction of high power Bluetooth however implies that this is no longer just a colocation issue but potentially a close location issue. Even managing Bluetooth to Bluetooth coexistence becomes a non-trivial task when you consider that +20 dBm transmissions will be closely proximate to -20 dBm or whisper mode -30 dBm transmissions and RX sensitivity of -93 dBm, potentially a dynamic range of 120dB. Though Bluetooth is a TDD system this isolation requirement will be challenging and vulnerable to ISI distortion. 

More broadly there is a need to consider how ‘5G Bluetooth’ couples technically and commercially with 5G including 5G IOT

Ericsson has a whitepaper on Bluetooth Mesh Networking. The conclusion of that agrees that Bluetooth may become a relevant player in IoT:

Bluetooth mesh is a scalable, short-range IoT technology that provides flexible and robust performance. The Bluetooth Mesh Profile is an essential addition to the Bluetooth ecosystem that enhances the applicability of Bluetooth technology to a wide range of new IoT use cases. Considering the large Bluetooth footprint, it has the potential to be quickly adopted by the market. 

With proper deployment and configuration of relevant parameters of the protocol stack, Bluetooth mesh is able to support the operation of dense networks with thousands of devices. The building automation use case presented in this white paper shows that Bluetooth mesh can live up to high expectations and provide the necessary robustness and service ratio. Furthermore, the network design of Bluetooth mesh is flexible enough to handle the introduction of managed operations on top of flooding, to further optimize behavior and automate the relay selection process.

Moreover, another Ericsson article says that "smartphones with built-in Bluetooth support can be part of the mesh, may be used to configure devices and act as capillary gateways."

A capillary network is a LAN that uses short-range radio-access technologies to provide groups of devices with wide area connectivity. Capillary networks therefore extend the range of the wide area mobile networks to constraint devices. Figure above illustrates the Bluetooth capillary gateway concept.

Once there are enough smartphones and Bluetooth devices with Bluetooth 5 and Mesh support, It would be interesting to see how developers use it. Would also be interesting to see if it will start encroaching LoRa and Sigfox markets as well.

Friday, 7 July 2017

Wireless Smart Ubiquitous Network (Wi-SUN) - Another IoT Standard

While we have been discussing IoT these last few weeks, here is another one that I came across. This picture above from a recent Rethink research shows that Wi-SUN is going to enjoy more growth than LoRaWAN or Sigfox. Another recent report by Mobile Experts also makes a mention of this IoT technology.

I am sure most of the readers have not heard of Wi-SUN, so what exactly is Wi-SUN technology?

From Rethink Research, The Wi-SUN Alliance was formed in 2011 to form an organization to push adoption of the IEEE 802.15.4g standard, which aimed to improve utility networks using a narrowband wireless technology. The peer-to-peer self-healing mesh has moved from its initial grid focus to encompass smart city applications (especially street lighting), and we spoke to its Chairman, Phil Beecher, to learn more.

Beecher explained that the non-profit Alliance set about defining subsets of the open standards, testing for interoperability, and certifying compatible products, and soon developed both a Field Area Network (FAN) and a Home Area Network (HAN), which allowed it to move into Home Energy Management Systems (HEMS) in Japan – a country that is leading the curve in HEMS deployments and developments.

As can be seen in the picture above:

  • Develops technical specifications of Physical Layer (PHY) and Medium Access Control (MAC) layers, with Network layer as required
  • Develop Interoperability test programs to ensure implementations are interoperable
  • Physical layer specification is based on IEEE802.15.4g/4u/4v
  • MAC layer may use different options depending on the application
  • Profile specifications are categorized based on application types

Picture source for the last three pics, Wi-SUN presentation here.

A new whitepaper from Wi-SUN Alliance provides comparison of Wi-SUN, LoRaWAN and NB-IoT.

A recent presentation by Dr. Simon Dunkley in Cambridge Wireless is embedded below:

Further reading:

Sunday, 7 May 2017

10 years battery life calculation for Cellular IoT

I made an attempt to place the different cellular and non-cellular LPWA technologies together in a picture in my last post here. Someone pointed out that these pictures above, from LoRa alliance whitepaper are even better and I agree.

Most IoT technologies lists their battery life as 10 years. There is an article in Medium rightly pointing out that in Verizon's LTE-M network, IoT devices battery may not last very long.

The problem is that 10 years battery life is headline figure and in real world its sometimes not that critical. It all depends on the application. For example this Iota Pet Tracker uses Bluetooth but only claims battery life of  "weeks". I guess ztrack based on LoRa would give similar results. I have to admit that non-cellular based technologies should have longer battery life but it all depends on applications and use cases. An IoT device in the car may not have to worry too much about power consumption. Similarly a fleet tracker that may have solar power or one that is expected to last more than the fleet duration, etc.

So coming back to the power consumption. Martin Sauter in his excellent Wireless Moves blog post, provided the calculation that I am copying below with some additions:

The calculation can be found in 3GPP TR 45.820, for NB-IoT in Chapter on ‘Energy consumption evaluation’.

The battery capacity used for the evaluation was 5 Wh. That’s about half or even only a third of the battery capacity that is in a smartphone today. So yes, that is quite a small battery indeed. The chapter also contains an assumption on how much power the device draws in different states. In the ‘idle’ state the device is in most often, power consumption is assumed to be 0.015 mW.

How long would the battery be able to power the device if it were always in the idle state? The calculation is easy and you end up with 38 years. That doesn’t include battery self-discharge and I wondered how much that would be over 10 years. According to the Varta handbook of primary lithium cells, self-discharge of a non-rechargable lithium battery is less than 1% per year. So subtract roughly 4 years from that number.

Obviously, the device is not always in idle and when transmitting the device is assumed to use 500 mW of power. Yes, with this power consumption, the battery would not last 34 years but less than 10 hours. But we are talking about NB-IoT so the device doesn’t transmit for most of the time. The study looked at different transmission patterns. If 200 bytes are sent once every 2 hours, the device would run on that 5 Wh battery for 1.7 years. If the device only transmits 50 bytes once a day the battery would last 18.1 years.

So yes, the 10 years are quite feasible for devices that collect very little data and only transmit them once or twice a day.

The conclusions from the report clearly state:

The achievable battery life for a MS using the NB-CIoT solution for Cellular IoT has been estimated as a function of reporting frequency and coupling loss. 

It is important to note that these battery life estimates are achieved with a system design that has been intentionally constrained in two key respects:

  • The NB-CIoT solution has a frequency re-use assumption that is compatible with a stand-alone deployment in a minimum system bandwidth for the entire IoT network of just 200 kHz (FDD), plus guard bands if needed.
  • The NB-CIoT solution uses a MS transmit power of only +23 dBm (200 mW), resulting in a peak current requirement that is compatible with a wider range of battery technologies, whilst still achieving the 20 dB coverage extension objective.  

The key conclusions are as follows:

  • For all coupling losses (so up to 20 dB coverage extension compared with legacy GPRS), a 10 year battery life is achievable with a reporting interval of one day for both 50 bytes and 200 bytes application payloads.
  • For a coupling loss of 144 dB (so equal to the MCL for legacy GPRS), a 10 year battery life is achievable with a two hour reporting interval for both 50 bytes and 200 bytes application payloads. 
  • For a coupling loss of 154 dB, a 10 year battery life is achievable with a 2 hour reporting interval for a 50 byte application payload. 
  • For a coupling loss of 154 dB with 200 byte application payload, or a coupling loss of 164 dB with 50 or 200 byte application payload, a 10 year battery life is not achievable for a 2 hour reporting interval. This is a consequence of the transmit energy per data bit (integrated over the number of repetitions) that is required to overcome the coupling loss and so provide an adequate SNR at the receiver. 
  • Use of an integrated PA only has a small negative impact on battery life, based on the assumption of a 5% reduction in PA efficiency compared with an external PA.

Further improvements in battery life, especially for the case of high coupling loss, could be obtained if the common assumption that the downlink PSD will not exceed that of legacy GPRS was either relaxed to allow PSD boosting, or defined more precisely to allow adaptive power allocation with frequency hopping.

I will look at the technology aspects in a future post how 3GPP made enhancements in Rel-13 to reduce power consumption in CIoT.

Also have a look this GSMA whitepaper on 3GPP LPWA lists the applications requirements that are quite handy.

Monday, 1 May 2017

Variety of 3GPP IoT technologies and Market Status - May 2017

I have seen many people wondering if so many different types of IoT technologies are needed, 3GPP or otherwise. The story behind that is that for many years 3GPP did not focus too much on creating an IoT variant of the standards. Their hope was that users will make use of LTE Cat 1 for IoT and then later on they created LTE Cat 0 (see here and here).

The problem with this approach was that the market was ripe for a solution to a different types of IoT technologies that 3GPP could not satisfy. The table below is just an indication of the different types of technologies, but there are many others not listed in here.

The most popular IoT (or M2M) technology to date is the humble 2G GSM/GPRS. Couple of weeks back Vodafone announced that it has reached a milestone of 50 million IoT connections worldwide. They are also adding roughly 1 million new connections every month. The majority of these are GSM/GPRS.

Different operators have been assessing their strategy for IoT devices. Some operators have either switched off or are planning to switch off they 2G networks. Others have a long term plan for 2G networks and would rather switch off their 3G networks to refarm the spectrum to more efficient 4G. A small chunk of 2G on the other hand would be a good option for voice & existing IoT devices with small amount of data transfer.

In fact this is one of the reasons that in Release-13 GSM is being enhanced for IoT. This new version is known as Extended Coverage – GSM – Internet of Things (EC-GSM-IoT ). According to GSMA, "It is based on eGPRS and designed as a high capacity, long range, low energy and low complexity cellular system for IoT communications. The optimisations made in EC-GSM-IoT that need to be made to existing GSM networks can be made as a software upgrade, ensuring coverage and accelerated time to-market. Battery life of up to 10 years can be supported for a wide range use cases."

The most popular of the non-3GPP IoT technologies are Sigfox and LoRa. Both these technologies have gained significant ground and many backers in the market. This, along with the gap in the market and the need for low power IoT technologies that transfer just a little amount of data and has a long battery life motivated 3GPP to create new IoT technologies that were standardised as part of Rel-13 and are being further enhanced in Rel-14. A summary of these technologies can be seen below

If you look at the first picture on the top (modified from Qualcomm's original here), you will see that these different IoT technologies, 3GPP or otherwise address different needs. No wonder many operators are using the unlicensed LPWA IoT technologies as a starting point, hoping to complement them by 3GPP technologies when ready.

Finally, looks like there is a difference in understanding of standards between Ericsson and Huawei and as a result their implementation is incompatible. Hopefully this will be sorted out soon.

Market Status:

Telefonica has publicly said that Sigfox is the best way forward for the time being. No news about any 3GPP IoT technologies.

Orange has rolled out LoRa network but has said that when NB-IoT is ready, they will switch the customers on to that.

KPN deployed LoRa throughout the Netherlands thereby making it the first country across the world with complete coverage. Haven't ruled out NB-IoT when available.

SK Telecom completed nationwide LoRa IoT network deployment in South Korea last year. It sees LTE-M and LoRa as Its 'Two Main IoT Pillars'.

Deutsche Telekom has rolled out NarrowBand-IoT (NB-IoT) Network across eight countries in Europe (Germany, the Netherlands, Greece, Poland, Hungary, Austria, Slovakia, Croatia)

Vodafone is fully committed to NB-IoT. Their network is already operational in Spain and will be launching in Ireland and Netherlands later on this year.

Telecom Italia is in process of launching NB-IoT. Water meters in Turin are already sending their readings using NB-IoT.

China Telecom, in conjunction with Shenzhen Water and Huawei launched 'World's First' Commercial NB-IoT-based Smart Water Project on World Water Day.

SoftBank is deploying LTE-M (Cat-M1) and NB-IoT networks nationwide, powered by Ericsson.

Orange Belgium plans to roll-out nationwide NB-IoT & LTE-M IoT Networks in 2017

China Mobile is committed to 3GPP based IoT technologies. It has conducted outdoor trials of NB-IoT with Huawei and ZTE and is also trialing LTE-M with Ericsson and Qualcomm.

Verizon has launched Industry’s first LTE-M Nationwide IoT Network.

AT&T will be launching LTE-M network later on this year in US as well as Mexico.

Sprint said it plans to deploy LTE Cat 1 technology in support of the Internet of Things (IoT) across its network by the end of July.

Further reading:

Sunday, 5 February 2017

An Introduction to IoT: Connectivity & Case Studies

I did an introductory presentation on IoT yesterday at at the University of Northampton, Internet of Things event. Below if my presentation in full. Can be downloaded from slideshare.

xoxoxoxoxoxo Added 18/02/2017 oxoxoxoxoxoxox

Below is video of the presentation above and post presentation interview:

Thursday, 26 January 2017

3GPP Rel-14 IoT Enhancements

A presentation (embedded below) by 3GPP RAN3 Chairman - Philippe Reininger - at the IoT Business & Technologies Congress (November 30, in Singapore). Main topics are eMTC, NB-IOT and EC-GSM-IoT as completed in 3GPP Release 13 and enhanced in Release 14. Thanks to Eiko Seidel for sharing the presentation.

Sunday, 4 December 2016

5G, Hacking & Security

It looks like devices that are not manufactures with security and privacy in mind are going to be the weakest link in future network security problems. I am sure you have probably read about how hacked cameras and routers enabled a Mirai botnet to take out major websites in October. Since then, there has been no shortage of how IoT devices could be hacked. In fact the one I really liked was 'Researchers hack Philips Hue lights via a drone; IoT worm could cause city blackout' 😏.

Enter 5G and the problem could be be made much worse. With high speed data transfer and signalling, these devices can create an instantaneous attack on a very large scale and generating signalling storm that can take a network down in no time.

Giuseppe TARGIA, Nokia presented an excellent summary of some of these issues at the iDate Digiworld Summit 2016. His talk is embedded below:

You can check out many interesting presentations from the iDate Digiworld Summit 2016 on Youtube and Slideshare.

Related posts:

Saturday, 29 October 2016

M2M vs IoT

This post is for mainly for my engineering colleagues. Over the years I have had many discussions to explain the difference between Machine-to-Machine (M2M) or Machine Type Communication (MTC) as 3GPP refers to them and the Internet of Things (IoT). Even after explaining the differences, I am often told that this is not correct. Hence I am putting this out here. Please feel free to express your views in the comments section.

Lets take an example of an office with 3 floors. Lets assume that each floor has a coffee machine like the one in this picture or something similar. Lets assume different scenarios:

Scenario 1: No connectivity
In this case a facilities person has to manually go to each of the floor and check if there are enough coffee beans, chocolate powder, milk powder, etc. He/She may have to do this say 3-4 times a day.

Scenario 2: Basic connectivity (M2M)
Lets say the coffee machine has basic sensors so it can send some kind of notification (on your phone or email or message, etc.) whenever the coffee beans, chocolate powder, milk powder, etc., falls below a certain level. In some cases you may also be able to check the levels using some kind of a app on your phone or computer. This is an example of M2M

Scenario 3: Advanced connectivity (IoT)
Lets say that the coffee machine is connected to the office system and database. It knows which employees come when and what is their coffee/drinks consumption pattern. This way the machine can optimize when it needs to be topped up. If there is a large meeting/event going on, the coffee machine can even check before the breaks and indicate in advance that it needs topping up with beans/chocolate/milk/etc.

Scenario 4: Intelligent Devices (Advanced IoT)
If we take the coffee machine from scenario 3 and add intelligence to it, it can even know about the inventory. How much of coffee beans, chocolate powder, milk powder, etc is in stock and when would they need ordering again. It can have an employee UI (User Interface) that can be used by employees to give feedback on which coffee beans are more/less popular or what drinks are popular. This info can be used by the machines to order the supplies, taking into account the price, availability, etc.

In many cases, API's would be available for people to build services on top of the basic available services to make life easier. Someone for example can build a service that if a cup is already at the dispenser and has been there for at least 2 minutes (so you know its not being used by someone else) then the person can choose/order their favourite drink from their seat so he/she doesn't have to wait for 30 seconds at the machine.

If you think about this further you will notice that in this scenario the only requirement for the human is to clean the coffee machine, top it up, etc. In future these can be automated with robots carrying out these kinds of jobs. There would be no need for humans to do these menial tasks.

I really like this slide from InterDigital as it captures the difference between M2M and IoT very well, especially in the light of the discussion above.

With the current M2M, we have:

  • Connectivity: connection for machines;
  • Content: massive raw data from things;

IoT is Communication to/from things which offer new services via cloud / context / collaboration / cognition technologies.

With evolution to IoT, we have:
  • Cloud: cloud service and XaaS (Everything as a Service) for IoT;
  • Context: context-aware design;
  • Collaboration: collaborative services;
  • Cognition: semantics and autonomous system adjustment
Let me know if you agree. 

Sunday, 16 October 2016

Inside 3GPP Release-13 - Whitepaper by 5G Americas

The following is from the 5G Americas press release:

The summary offers insight to the future of wireless broadband and how new requirements and technological goals will be achieved. The report updates Release 13 (Rel-13) features that are now completed at 3GPP and were not available at the time of the publication of a detailed 5G Americas report, Mobile Broadband Evolution Towards 5G: 3GPP Release 12 & Release 13 and Beyond in June 2015.
The 3GPP standards have many innovations remaining for LTE to create a foundation for 5G.  Rel-12, which was finalized in December 2014, contains a vast array of features for both LTE and HSPA+ that bring greater efficiency for networks and devices, as well as enable new applications and services. Many of the Rel-12 features were extended into Rel-13.  Rel-13, functionally frozen in December 2015 and completed in March 2016, continues to build on these technical capabilities while adding many robust new features.
Jim Seymour, Principal Engineer, Mobility CTO Group, Cisco and co-leader of the 5G Americas report explained, “3GPP Release 13 is just a peek behind the curtain for the unveiling of future innovations for LTE that will parallel the technical work at 3GPP on 5G. Both LTE and 5G will work together to form our connected future.”
The numerous features in the Rel-13 standards include the following for LTE-Advanced:
  • Active Antenna Systems (AAS), including beamforming, Multi-Input Multi-Output (MIMO) and Self-Organizing Network (SON) aspects
  • Enhanced signaling to support inter-site Coordinated Multi-Point Transmission and Reception (CoMP)
  • Carrier Aggregation (CA) enhancements to support up to 32 component carriers
  • Dual Connectivity (DC) enhancements to better support multi-vendor deployments with improved traffic steering
  • Improvements in Radio Access Network (RAN) sharing
  • Enhancements to Machine Type Communication (MTC)
  • Enhanced Proximity Services (ProSe)
Some of the standards work in Rel-13 related to spectrum efficiency include:                                                                                                                       
  • Licensed Assisted Access for LTE (LAA) in which LTE can be deployed in unlicensed spectrum
  • LTE Wireless Local Area Network (WLAN) Aggregation (LWA) where Wi-Fi can now be supported by a radio bearer and aggregated with an LTE radio bearer
  • Narrowband IoT (NB-IoT) where lower power wider coverage LTE carriers have been designed to support IoT applications
  • Downlink (DL) Multi-User Superposition Transmission (MUST) which is a new concept for transmitting more than one data layer to multiple users without time, frequency or spatial separation
“The vision for 5G is being clarified in each step of the 3GPP standards. To understand those steps, 5G Americas provides reports on the developments in this succinct, understandable format,” said Vicki Livingston, Head of Communications for the association.

The whitepaper as follows:

Related posts:

Wednesday, 10 August 2016

New whitepaper on Narrowband Internet of Things

Rohde & Schwarz has just published a new whitepaper on Narrowband Internet of Things (NB-IoT).

NB-IoT has been introduced as part of 3GPP Rel-13 where 3GPP has specified a new radio interface. NBIoT is optimized for machine type traffic and is kept as simple as possible in order to reduce device costs and to minimize battery consumption. In addition, it is also adapted to work in difficult radio conditions, which is a frequent operational area for certain machine type communication devices. Although NB-IoT is an independent radio interface, it is tightly connected with LTE, which also shows up in its integration in the current LTE specifications.
The paper contains the necessary technical details including the new channels, new frame and slot structure, new signalling messages including the system information messages, etc. It's a good read.

Its embedded below and can be downloaded from here:

Related posts:

Saturday, 2 April 2016

Some interesting April Fools' Day 2016 Technology Jokes

When I posted April Fools' jokes on the blog last couple of years (see 2014 & 2015) , they seem to be very popular so I thought its worth posting them this year too. If I missed any interesting ones, please add in comments.

The one I really liked best is the Samsung Internet of Trousers (IoT) featuring:

Wi-Fly: Gone are the days of unnoticed, unzipped trouser zippers upon exiting the restroom. Should your fly remain open for more than three minutes, the ZipARTIK module will send a series of notifications to your smartphone to save you from further embarrassment.

Get Up! Alert: Using pressure sensors, Samsung’s intelligent trousers detect prolonged periods of inactivity and send notifications to ‘get up off of that thing’ at least once an hour. Should you remain seated for more than three hours, devices embedded in each of the rear pockets send mild electrical shocks to provide extra motivation.

Keep-Your-Pants-On Mode: Sometimes it’s easy to get carried away with the moment. The Samsung Bio-Processor in your pants checks your bio-data including your heart rate and perspiration level. If these indicators get too high, Samsung’s trousers will send you subtle notifications as a reminder of the importance of keeping your cool.

Fridge Lock: If the tension around your waist gets too high, the embedded ARTIK chip module will send signals to your refrigerator to prevent you from overeating. The fridge door lock can then only be deactivated with consent from a designated person such as your mother or significant other.

Microsoft has an MS-DOS mobile in mind for this day. I wont be surprised if a real product like this does become popular with older generation. I personally wouldn't mind an MS-DOS app on my mobile. Here is a video:

It would have been strange if we didnt have a Robot for a joke. Domino's have introduced the Domimaker. Here's how it works:

T-Mobile USA is not shy pulling punches on its rivals with the Binge On data plan where it lets people view certain video channels without using up their data. Here is the video and more details on mashable.

Samsung ExoKinetic helps your phone self-charge

Google had quite a few pranks as always. I will ignore 'mic drop' which backfired and caused them headache.

Google Express has a new delivery mechanism, just for the April Fool's day. (There has to be one drone idea)

Google Cardboard Plastic is an interesting one too. Here is the video:

Finally, its the Google Fiber Teleportation.

Other interesting ones:

Saturday, 21 November 2015

'Mobile Edge Computing' (MEC) or 'Fog Computing' (fogging) and 5G & IoT

Picture Source: Cisco

The clouds are up in the sky whereas the fog is low, on the ground. This is how Fog Computing is referred to as opposed to the cloud. Fog sits at the edge (that is why edge computing) to reduce the latency and do an initial level of processing thereby reducing the amount of information that needs to be exchanged with the cloud.

The same paradigm is being used in case of 5G to refer to edge computing, which is required when we are referring to 1ms latency in certain cases.

As this whitepaper from Ovum & Eblink explains:

Mobile Edge Computing (MEC): Where new processing capabilities are introduced in the base station for new applications, with a new split of functions and a new interface between the baseband unit (BBU) and the remote radio unit (RRU).
Mobile Edge Computing (MEC) is an ETSI initiative, where processing and storage capabilities are placed at the base station in order to create new application and service opportunities. This new initiative is called “fog computing” where computing, storage, and network capabilities are deployed nearer to the end user.

MEC contrasts with the centralization principles discussed above for C-RAN and Cloud RAN. Nevertheless, MEC deployments may be built upon existing C-RAN or Cloud RAN infrastructure and take advantage of the backhaul/fronthaul links that have been converted from legacy to these new centralized architectures.

MEC is a long-term initiative and may be deployed during or after 5G if it gains support in the 5G standardization process. Although it is in contrast to existing centralization efforts, Ovum expects that MEC could follow after Cloud RAN is deployed in large scale in advanced markets. Some operators may also skip Cloud RAN and migrate from C-RAN to MEC directly, but MEC is also likely to require the structural enhancements that C-RAN and Cloud RAN will introduce into the mobile network.

The biggest challenge facing MEC in the current state of the market is its very high costs and questionable new service/revenue opportunities. Moreover, several operators are looking to invest in C-RAN and Cloud RAN in the near future, which may require significant investment to maintain a healthy network and traffic growth. In a way, MEC is counter to the centralization principle of Centralized/Cloud RAN and Ovum expects it will only come into play when localized applications are perceived as revenue opportunities.

And similarly this Interdigital presentation explains:

Extends cloud computing and services to the edge of the network and into devices. Similar to cloud, fog provides network, compute, storage (caching) and services to end users. The distinguishing feature of Fog reduces latency & improves QoS resulting in a superior user experience

Here is a small summary of the patents with IoT and Fog Computing that has been flied.

Wednesday, 18 November 2015

Cellular IoT (CIoT) or LoRa?

Back in September, 3GPP reached a decision to standardise NarrowBand IOT (NB-IOT). Now people familiar with the evolution of LTE-A UE categories may be a bit surprised with this. Upto Release-11, the lowest data rate device was UE Cat-1, which could do 10Mbps in DL and 5Mbps in UL. This was power hungry and not really that useful for low data rate sensor devices. Then we got Cat-0 as part of Release-12 which simplified the design and have 1Mbps in DL & UL.

Things start to become a bit complex in Release-13. The above picture from Qualcomm explains the evolution and use cases very well. However, to put more details to the above picture, here is some details from the 4G Americas whitepaper (embedded below)

In support of IoT, 3GPP has been working on all several related solutions and generating an abundance of LTE-based and GSM-based proposals. As a consequence, 3GPP has been developing three different cellular IoT standard- solutions in Release-13:
  • LTE-M, based on LTE evolution
  • EC-GSM, a narrowband solution based on GSM evolution, and
  • NB-LTE, a narrowband cellular IoT solution, also known as Clean Slate technologies
However, in October 2015, the 3GPP RAN body mutually agreed to study the combination of the two different narrowband IoT technical solutions, EC-GSM and NB-LTE, for standardization as a single NB-IoT technology until the December 2015 timeframe. This is in consideration of the need to support different operation modes and avoid divided industry support for two different technical solutions. It has been agreed that NB-IoT would support three modes of operation as follows:
  • ‘Stand-alone operation’ utilizing, for example, the spectrum currently being used by GERAN systems as a replacement of one or more GSM carriers,
  • ‘Guard band operation’ utilizing the unused resource blocks within a LTE carrier’s guard-band, and
  • ‘In-band operation’ utilizing resource blocks within a normal LTE carrier.

Following is a brief description of the various standard solutions being developed at 3GPP by October 2015:

LTE-M: 3GPP RAN is developing LTE-Machine-to-Machine (LTE-M) specifications for supporting LTE-based low cost CIoT in Rel-12 (Low-Cost MTC) with further enhancements planned for Rel-13 (LTE eMTC). LTE-M supports data rates of up to 1 Mbps with lower device cost and power consumption and enhanced coverage and capacity on the existing LTE carrier.

EC-GSM: In the 3GPP GERAN #62 study item “Cellular System Support for Ultra Low Complexity and Low Throughput Internet of Things”, narrowband (200 kHz) CIoT solutions for migration of existing GSM carriers sought to enhance coverage by 20 dB compared to legacy GPRS, and achieve a ten year battery life for devices that were also cost efficient. Performance objectives included improved indoor coverage, support for massive numbers of low-throughput devices, reduced device complexity, improved power efficiency and latency. Extended Coverage GSM (EC-GSM) was fully compliant with all five performance objectives according to the August 2015 TSG GERAN #67 meeting report. GERAN will continue with EC-GSM as a work item within GERAN with the expectation that standards will be frozen by March 2016. This solution necessarily requires a GSM network.

NB-LTE: In August 2015, work began in 3GPP RAN Rel-13 on a new narrowband radio access solution also termed as Clean Slate CIoT. The Clean Slate approach covers the Narrowband Cellular IoT (NB-CIoT), which was the only one of six proposed Clean Slate technologies compliant against a set of performance objectives (as noted previously) in the TSG GERAN #67 meeting report and will be part of Rel-13 to be frozen in March 2016. Also contending in the standards is Narrowband LTE Evolution (NB-LTE) which has the advantage of easy deployment across existing LTE networks.

Rel-12 introduces important improvements for M2M like lower device cost and longer battery life. Further improvements for M2M are envisioned in Rel-13 such as enhanced coverage, lower device cost and longer battery life. The narrowband CIoT solutions also aim to provide lower cost and device power consumption and better coverage; however, they will also have reduced data rates. NB CleanSlate CIoT is expected to support data rates of 160bps with extended coverage.

Table 7.1 provides some comparison of the three options to be standardized, as well as the 5G option, and shows when each release is expected to be finalized.

Another IoT technology that has been giving the cellular IoT industry run for money is the LoRa alliance. I blogged about LoRa in May and it has been a very popular post. A extract from a recent article from Rethink Research as follows:

In the past few weeks, the announcements have been ramping up. Semtech (the creator of the LoRa protocol itself, and the key IP owner) has been most active, announcing that The Lace Company, a wireless operator, has deployed LoRa network architecture in over a dozen Russian cities, claiming to cover 30m people over 9,000km2. Lace is currently aiming at building out Russian coverage, but will be able to communicate to other LoRa devices over the LoRa cloud, as the messages are managed on cloud servers once they have been transmitted from end-device to base unit via LoRaWAN.

“Our network allows the user to connect to an unlimited number of smart sensors,” said Igor Shirokov, CEO of Lace Ltd. “We are providing connectivity to any device that supports the open LoRaWAN standard. Any third party company can create new businesses and services in IoT and M2M market based on our network and the LoRaWAN protocol.”

Elsewhere, Saudi Arabian telco Du has launched a test LoRa network in Dubai, as part of a smart city test project. “This is a defining moment in the UAE’s smart city transformation,” said Carlos Domingo, senior executive officer at Du. “We need a new breed of sensor friendly network to establish the smart city ecosystem. Thanks to Du, this capability now exists in the UAE Today we’ve shown how our network capabilities and digital know-how can deliver the smart city ecosystem Dubai needs. We will not stop in Dubai; our deployment will continue country-wide throughout the UAE.”

But the biggest recent LoRa news is that Orange has committed itself to a national French network rollout, following an investment in key LoRa player Actility. Orange has previously trialed a LoRa network in Grenoble, and has said that it opted for LoRa over Sigfox thanks to its more open ecosystem – although it’s worth clarifying here that Semtech still gets a royalty on every LoRa chip that’s made, and will continue to do so until it chooses not to or instead donates the IP to the non-profit LoRa Alliance itself.

It would be interesting to see if this LoRa vs CIoT ends up the same way as WiMAX vs LTE or not.

Embedded below is the 4G Americas whitepaper as well as a LoRa presentation from Semtech:

Further reading:

Monday, 24 August 2015

Some interesting presentations from ETSI Security workshop

ETSI held their security week from 22-26 June 2015 at their headquarters. There are lots of interesting presentations (see agenda [PDF]); I am embedding some here.

This is a good presentation providing a summary of the reasons for IoT security issues and some of the vulnerabilities that have been seen as a result of that.

The next one is The Threat landscape of connected vehicles and ITS (Intelligent Transportation Systems) integration in general

This presentation provides a good summary of the threats in the connected cars/vehicles which is only going to become more common. Some of these issues will have to be solved now before we move on to the autonomous vehicles in future. Security issues there will be catastrophic and many lives can be lost.

The final presentation is from 3GPP SA3 that provides a quick summary of security related work in 3GPP.

Sunday, 5 July 2015

A tale of two Smart Cities

Over the last few months I heard quite a few talks about Smart Cities. Here are two that I thought its worth posting and a very good TEDx talk at the bottom

I think we all agree that more and more people will move from rural to urban areas and the cities will not only grow in population but also in size. The infrastructure will have to grow to be able to cope with the influx of people and increased demand on services.

I guess in most developed nations we have the 1.0 Era Digital City which is long way away from the 3.0 Era Smart City.

To be a full fledged 3.0 Smart City, every aspect of our life may need to evolve into "Smart". Anyway, here is the complete presentation:

While IoT would be important, access, big data, applications, etc. all will have a role to play.

If you want to find out more about the Milton Keynes smart city, also see this video on Youtube. There are driverless pods and other autonomous cars which may be considered as initial step towards smart cities, see this interesting video here.

Finally here is the TEDx talk about designing these smart cities for future: