Monday, 23 December 2019

Top 10 posts for 2019


As one would guess, 2019 was dominated by 5G and so was this blog. Surprisingly the most popular post was on Open RAN. Most likely because many people did not understand what the term meant.

People still continue to ask us when we will be changing the 3G4G name. We will change it when 3GPP (whose name is derived from 3G) and/or GSMA (whose name is derived from 2G/GSM) change their name. In short, never!

Here are the posts, from most popular to the tenth most popular, in descending order of popularity

1. A quick tutorial on Open RAN, vRAN & White Box RAN - Feb 2019

2. Displaying 5G Network Status Icon on Smartphones and Other Devices - Feb 2019

3. Prof. Andy Sutton: 5G Radio Access Network Architecture Evolution - Jan 2019

4. Theoretical Throughput Calculation of FDD 5G New Radio (NR) - Feb 2019

5. New 3GPP Release-17 Study Item on NR-Lite (a.k.a. NR-Light) - Aug 2019

6. Slides and Videos from the 1st 6G Wireless Summit - Apr 2019

7. Examples of 5G Use Cases & Applications - May 2019

8. Updated 5G Terminology Presentation - Mar 2019

9. 3GPP 5G Standardization Update post RAN#84 - July 2019

10. Exploiting Possible 5G Vulnerabilities - Oct 2019

Finally, a post from 2018 that continued to perform brilliantly this year

11. 5G Network Architecture Options (Updated) - Oct 2018

If you had a favorite post, let us know which one.

Related Posts:

Monday, 16 December 2019

5G Integrated Access and Backhaul (IAB) Enhancements in Rel-17


It's been a while since I last wrote about IAB on this blog here. At that time 3GPP Release-16 was being discussed. Since then things have moved on. While Release-16 is being prepared for final release soon, Release-17 study and work items have just been agreed upon.

IAB is included as part of Rel-16 but there isn't a comprehensive document or presentation easily available to details all that it will contain. Similarly the enhancements for Release-17 are available only superficially. Qualcomm is well known for making some really excellent presentations available on 5G. One of their presentations from January (here) has some details on IAB (pg. 32 - 35). There was also an excellent presentation by Navid Abedini, Qualcomm from IEEE Sarnoff Symposium, 2019 which is embedded at the end.


In a 3GPP RAN#84 discussion document RP-191181, Samsung has provided a comprehensive summary of what is being done as part of Rel-16 and what did not make in that:
  • Rel-16 IAB aims at basic operations
    • Architecture and protocol design
    • IAB integration procedure 
    • Routing, BAP and BH configuration
    • CP and UP data transmission  via IAB
    • Topology support: 
      • Spanning Tree (ST) and Directed acyclic graph (DAG) 
      • Intra-Donor adaptation is prioritized
  • The following cannot  be supported in Rel-16
    • Mobile IAB
    • Topology support: Mesh
  • Some functionalities in Rel-16 may not be completed due to time constrains e.g. 
    • Topology adaptation between IAB donors
    • Mechanisms for efficient control signaling transmission
Ericsson also provides a good summary in RP-190971 regarding Release 16 IAB and Rel-17 enhancements:
  • IAB Rel-16 provide basic support for multi-hop and multi-path relaying. 
  • The solution supports 
    • QoS prioritization of traffic on the backhaul link
    • Flexible resource usage between access and backhaul
    • Topology adaptivity in case link failure
  • In Rel-17 it would be possible to further evolve the IAB solution targeting increased efficiency and support for new use cases


Meanwhile in the recently concluded RAN#86, AT&T provided a good detailed summary on what enhancements are required for IAB as part of Rel-17 in RP-192709
  • Duplexing enhancements
    • Multiplexing beyond TDM (FDM/SDM/multi-panel Tx/Rx) including multi-parent scenarios, case 6/7 timing alignment, power control/CLI optimizations
  • Topology enhancements
    • Mobile IAB: CP/UP split + Group mobility 
    • Inter-CU topology adaptation
    • Mesh-connectivity between IAB nodes for local control/user plane routing
  • User plane enhancements
    • Multi-hop scheduling enhancement – exchange of benefit metric between IAB nodes to enable radio-aware multi-hop scheduling to improve throughput performance
  • Network Coding
    • Study benefits compared to duplication over redundant backhaul routes

We will have to wait and see what makes it into the enhancements and what don't. Meanwhile here is a video from Navid Abedini, Qualcomm from IEEE Sarnoff Symposium, 2019




Related Posts:

Monday, 9 December 2019

5G Evolution with Matthew Baker, Nokia


I wrote a summary of CW (Cambridge Wireless) TEC conference here a couple of months back. The last session was on "Getting ready for Beyond-5G Era". Matthew Baker, Head of Radio Physical Layer & Co-existence Standardization, Nokia Bell Labs was one of the speakers. His talk provided a summary of 3GPP Rel-15 and then gave a nice and short summary of all the interesting things coming in Rel-16 and being planned for Rel-17. The slides from his presentation is embedded below:



Nokia also created a short video where Matthew talks about these new features. It's embedded below:



Related Posts:

Wednesday, 4 December 2019

Challenges of 5G Inter-Node Handovers

In all mobile communication networks handovers are the most complex signaling procedures, because multiple network elements (or network functions) are involved. Thus, it is logical that dual connectivity with two different base stations contributing to the radio connection simultaneously are even more complicated. And in EN-DC these two base stations are often covering different footprints using different carrier frequencies.This leads to a situation where we have more options for performing a handover in detail compared with plain LTE handover scenarios before.

The two signaling scenarios presented below illustrate in which different ways a change of the LTE master eNodeB can be performed during an ongoing EN-DC radio connection by using the X2 interface. In a very similar way it is also possible to perform S1 handover from old to new MeNB.

The pros and cons of these options have been discussed already by Martin Sauter in his Wireless Moves blog.

Inter-MeNB Handover without 5G Inter-Site Anchor

Figure 1 shows the easiest way of handing over the signaling connection from one MeNB to another one. Here it is up to the new MeNB to decide if and how the 5G part of the radio connection is continued.

Figure 1: X2 Handoverof EN-DC connection without 5G inter-site anchor

The handover is triggered when the UE sends a RRC Measurement Report (step 1) indicating that a stronger 4G cell than the currently used primary cell was measured. From its neighbor list the current MeNB detects that this better cell belongs to a neighbor eNB.

To provide both, the the Master Cell Group (MCG) and Secondary Cell Group (SCG) parameters to this neighbor eNB the old MeNB queries the SCG configuration parameters from the old SgNB by performing the X2AP SgNB Modification procedure (step 2+3).

Then it sends the X2AP Handover Request message to the target MeNB (step 4) including all information necessary to continue the 5G radio link in case the target MeNB decides to go for this option.

However, what comes back from the target MeNB is a plain LTE handover command (LTE RRC Connection Reconfiguration message [step 6]) embedded in the X2AP Handover Request Acknowledge message (step 5).

Due to this the old MeNB releases all 5G resources and the UE context in the SgNB (steps 7 + 10).

After the UE  successfully connected via radio interface with the target cell in the new MeNB the S1AP Path Switch procedure is executed to re-route the GTP/IP-Tunnels on S1-U (step 8) and releases the X2 UE context in the old MeNB (step 9)

The new MeNB then waits for a new inter-RAT measurement event B1 (step 11) before starting a new SgNB addition procedure (step 12).  Once the SgNB addition is successfully completed including all necessary reconfigurations/modifications on RRC and S1 the payload transmission over 5G resources is continued.

Inter-MeNB Handover with 5G Inter-Site Anchor

Now figure 2 shows what happens when the new MeNB decides to keep the existing UE context in the SgNB while the RRC measurement results and parameters are identical with what was presented above. 
Figure 2: X2 Handoverof EN-DC connection with 5G inter-site anchor

The difference in the call flow starts at step 5 when the new MeNB after receiving the X2AP Handover Request (step 4) starts the X2AP SgNB Addition procedure towards the SgNB (old = new!). The SgNB-UE-X2AP-ID earlier requested in step 2+3 acts as the reference number for the existing context that is going to be continued.

After adding the SgNB UE context successfully the new MeNB sends the X2AP Handover Request Acknowledge message including an UE Context Kept = "true" flag and the Handover Command (step 8).

After the UE successfully connected to the target cell of the new MeNB the S1AP Path Switch procedure is performed and the temporary X2 UE context between old and new MeNB is released (step 10).

The big advantage of handling the handover in this way: The duration of the interruption of the payload transmission over 5G radio resources is minimalized and subscriber experience is significantly better compared to the scenario in figure 1.

Monday, 2 December 2019

Guest Post: Exploring Network Convergence of Mobile, Broadband and Wi-Fi

This is a guest post by Ben Toner, Founder and Director, Numerous Networks


Are multiple networks better than one?

How many articles have you read with a title similar to "Which technology is better, 5G or Wi-Fi6?" If, like me, you regularly use Wi-Fi and cellular (I still use 4G though) then you might find it hard to take sides.

Enter Network Convergence - the concept of bringing multiple networks together to get the best of them all. Imagine, as an end user, not having to decide which network to use but instead feeling satisfied that your data was traversing the best combination of networks at that moment in time.

Imagine a business traveler being connected to Wi-Fi which is slow or busy while trying to take that all important conference call while sitting in an airport. Because you are roaming you want to use that Wi-Fi but you do not want to compromise the video call quality. If your network and device could work together to use just enough cellular data to supplement the slow Wi-Fi so that you stayed within your daily roaming quota but never lost a moment in the video call - then you would probably be very happy with that service. Better still, as you start walking off, if the call transitioned from Wi-Fi to cellular with no dropouts or hangup then you might be delighted!

Earlier I underlined best because that in itself is somewhat complicated.  The example above is easy to desribe but quite hard for to achieve within a framework where all possible scenarios are handled that well, for every user. The common questions which need to be factored into any such choice are:
  • What do I as the end user want? 
  • What performance can each network deliver. 
  • How important is the transfer of content at that time and 
  • How much am I willing to pay for it (how many MB of my data plan am I willing to use?). 

This is one of the challenges that we cannot easily solve today, but technology is being developed to help in that process. The operators and device vendors are working within standardisation to develop technology which can provide such a converged service. However at this time there is still a rules mechanism behind it all which does not really describe how user input and preference is going to be captured.

In the last 10 years I have witnessed many battles within service providers when deciding what "one size fits all" service to offer everyone when deciding how to make service provider Wi-Fi available to their customers; all fuelled by my points above.

A lot of concepts are well designed and somewhat mature but deciding exactly what will be implemented in standards is currently ongoing.

In the following slides and video I introduce this whole concept of Network Convergence. The following content introduces the concept and then takes a detailed look at the ATSSS; technology being defined in 3GPP. I also have highlighted the technologoies you can get hold of today to try out network convergence.

I encourage you all to download the example technologies and try convergence for yourself. I'm eager to hear opinions of what technologies work best for each of you. And better still, what is not being provided which you think should be...

Looking forward to your feedback and answering your questions...





Ben Toner
Founder and Director, Numerous Networks


Related Posts: