Showing posts with label China. Show all posts
Showing posts with label China. Show all posts

Monday, 4 October 2021

Are there 50 Billion IoT Devices yet?

Detailed post below but if you are after a quick summary, it's in the picture above.

Couple of weeks back someone quoted that there were 50 billion devices last year (2020). After challenging them on the number, they came back to me to say that there were over 13 billion based on GSMA report. While the headline numbers are correct, there are some finer details we need to look at.

It all started back in 2010 when the then CEO of Ericsson announced that there will be 50 Billion IoT Devices by 2020. You could read all about it here and see the presentation here. While it doesn't explicitly say, it was expected that the majority of these will be based on cellular technologies. I also heard the number 500 Billion by 2030, back in 2013.

So the question is how many IoT devices are there today and how many of these are based on mobile cellular technologies?

The headline number provided by the GSMA Mobile Economy report, published just in time for MWC 2021, is 13.1 billion in 2020. It does not provide any further details on what kind of connectivity these devices use. I had to use my special search skills to find the details here.

As you can see, only 1.9 billion of these are based on cellular connections, of which 0.2 billion are based on licensed Low Power Wide Area (licensed LPWA, a.k.a. LTE-M and NB-IoT) connections. 

Ericsson Mobility Report, June 2021, has a much more detailed breakdown regarding the numbers as can be seen in the slide above. As of the end of 2020, there were 12.4 billion IoT devices, of which 10.7 billion were based on Short-range IoT. Short-range IoT is defined as a segment that largely consists of devices connected by unlicensed radio technologies, with a typical range of up to 100 meters, such as Wi-Fi, Bluetooth and Zigbee.

Wide-area IoT, which consists of segment made up of devices using cellular connections or unlicensed low-power technologies like Sigfox and LoRa had 1.7 billion devices. So, the 1.6 billion cellular IoT devices also includes LPWAN technologies like LTE-M and NB-IoT.

I also reached out to IoT experts at analyst firm Analysys Mason. As you can see in the Tweet above, Tom Rebbeck, Partner at Analysys Mason, mentioned 1.6 billion cellular (excluding NB-IoT + LTE-M) and 220 million LPWA (which includes NB-IoT, LTE-M, as well as LoRa, Sigfox etc.) IoT connections.

I also noticed this interesting chart in the tweet above which shows the growth of IoT from Dec 2010 until June 2021. Matt Hatton, Founding Partner of Transforma Insights, kindly clarified that the number as 1.55 billion including NB-IoT and LTE-M.

As you can see, the number of cellular IoT connections are nowhere near 50 billion. Even if we include all kinds of IoT connectivity, according to the most optimistic estimate by Ericsson, there will be just over 26 billion connections by 2026.

Just before concluding, it is worth highlighting that according to all these cellular IoT estimates, over 1 billion of these connections are in China. GSMA's 'The Mobile Economy China 2021' puts the number as 1.34 billion as of 2020, growing to 2.29 billion by 2025. Details on page 9 here.

Hopefully, when someone wants to talk about Internet of Thing numbers in the future, they will do a bit more research or just quote the numbers from this post here.

Related Posts

Sunday, 21 March 2021

The Status of 5G Standalone (5G SA) Networks - March 2021


I wonder if you have seen as many adverts talking about the 5G revolution as I have. In fact I have collected many of them here. The problem is that most of these promised 5G awesomeness can only be delivered when 5G Standalone networks are launched. 

Before going further, if you don't know what 5G standalone (SA) and non-standalone (NSA) networks are, then you may want to check one of my tutorials/video. For beginners here and slightly advanced version here. If you just want to learn about the 5G core, tutorial here.

I believe that the 5G Non-standalone networks are a hack that were designed mainly to show just the 5G icon and in some cases it also provided enhanced speeds. Some operators have realised this and are thinking about the 5G NSA sunset. There are some potential issues with 5G SA speeds that need sorting out though.

GSA recently held a webinar looking at the status of 5G Standalone networks. The video of the webinar is embedded at the end of the post. The webinar summarised the stats as following:

  • By mid-March 2021, 428 operators in 132 countries/territories were investing in 5G
  • 176 operators in 76 countries/territories had announced they had deployed 3GPP compliant 5G technology in their live networks
  • Of those, a total of 153 operators in 64 countries/territories had launched one or more 3GPP-compliant 5G services
    • 145 operators in 60 countries/territories had launched 3GPP-compliant 5G mobile services
    • 51 operators in 29 countries/territories had launched 3GPP-compliant 5G FWA or home broadband services
  • For comparison, there are 807 public LTE networks worldwide
  • GSA has identified 68 operators in 38 countries/territories that are investing in 5G standalone for public mobile networks
  • Of those, a total of 7 operators in 5 countries/territories had launched 5G SA networks
    • Operators in China have deployed/upgraded hundreds of thousands of base stations 
    • T-Mobile has a nationwide network
    • Plus China Mobile HK, Rain (South Africa) and DirecTV (Colombia)
  • Also ITC KSA (soft launch), STC KSA deployed, Telstra 5G core deployed, plus various contracts for 5G core systems

Private Networks, Non-public networks (NPN) and Industrial 5G Networks are also expected to make use of standalone 5G networks. As 5G networks get virtualized and open, we will see a lot more of these.

The webinar also highlighted the progress of 5G devices:

  • There has been rapid growth in the numbers and types of 5G devices being announced and launched
  • As of end February:
    • 628 5G devices announced
    • 404 commercially available (up from 303 at the end of November)
    • 104 vendors
    • 21 announced form factors
    • Majority are phones (306 announced, 274 commercial)
  • 5G SA devices are also appearing
    • 298 devices announced with 5G SA support
    • 204 commercial devices state support for 5G SA
      • Software upgrades likely to be required
    • Steadily climbing up as % of all 5G devices
      • Now >47% of announced
      • >50% of commercial

Here is the webinar:

Related Posts

Tuesday, 26 January 2021

Banana and Egg gets 5G Telesurgery


Last year I wrote a detailed post on '5G Remote Surgery and Telehealth Solutions' here. Since then many people with little or no understanding of how the technology works have got in touch with me to educate me about all the 5G remote surgeries taking place. 

I am always prepared to learn new things and looked at both of these surgeries (detailed below) with open mind. I was still unable to see the 5G angle here. In fact in the case of banana, I don't even know if 5G was used.

Back in 2014, a BBC article detailed how a surgeon in Canada has performed over 20 remote surgeries with the help of a robot including colon operations and hernia repairs. The article goes on to ask, "The technology behind long-distance surgery is now mature enough to be used more widely, allowing people to access world-leading expertise and better healthcare without having to travel. Could it become the norm in hospitals?"

The first case is from Aug 2020 as shown in the video above where Doctor Liu Rong from a hospital in Beijing takes on the challenge of remotely controlling a medical robot in distant Qingdao City via the 5G network to finish an egg membrane suture surgery in 90 minutes.

The question here is that where exactly was 5G used and why? Did both the ends have 5G or just one end? Etc. I was unable to find a schematic to show the end-to-end details that would provide credibility to such a scenario.

To explain what I mean, when Vodafone UK launched 5G, they demonstrated low latency by giving an example of Haptic tackle using TeslaSuit. You can read the details and watch the video here

As you can see, the end-to-end solution architecture is nicely explained as shown in this picture. I would expect a similar kind of schematic for the surgery scenario. While I can clearly understand the use case for sports outdoor, I am not able to understand the use case for the surgery indoors. Where was the access point? What frequency was used? Was this Standalone or Non-Standalone network? And many other questions like these. 

The second case was a more recent one. The video is embedded below.

Even though the video mentions 5G and many other sites (see this LinkedIn post with nearly 2.5 million views) that have picked this up mention 5G, the original Instagram video does not mention 5G. In all likelihood there is no 5G connection with this one.

Surely there will be a real life 5G remote surgery use case someday that will capture our imagination but not today.

Related Posts:

Monday, 11 May 2020

5G Remote Surgery and Telehealth Solutions


One of the most controversial 5G use cases is the remote surgery. In this post I want to quickly look at the history and what is possible. Before I go to that, here is a short summary video that I am embedding upfront.



As far as I can recall, Ericsson was the first vendor that started talking about remote surgery. This is a tweet from back in 2017.


Huawei didn't want to be far behind so they did one at MWC Shanghai in 2018. Their tweet with video is embedded below.


In January 2019, South China Morning Post (SCMP) showed a video of a remote surgery on an animal. While the video and the article didn't provide many details, I am assuming this was done by Huawei as detailed here. The video of the surgery below.



This was followed by Mobile World Congress 2019 demo where a doctor used 5G to direct surgery live from a stage at MWC to Hospital Clinic Barcelona over 3 miles away. The team of doctors was removing a cancerous tumor from a patient's colon. This video from that is embedded below.



Vodafone New Zealand had a silly remote surgery of a dog video but looks like they have removed it.  Nothing can beat this Telecom Italia ad embedded below.



There are some realistic use cases. One of them being that with 5G the number of cables / wires in a hospital can be reduced saving on the disinfection.
NTT Docomo showcased 5G Mobile SCOT (Smart Cyber Operating Theater) which is an Innovative solution to enable advanced medical treatment in diverse environments. You can read more details here.

There are lots of other things going on. Here is a short list:
  • April 2020: Because of Coronavirus COVID-19, NT Times has an article on Telemedicine Arrives in the U.K.: ‘10 Years of Change in One Week’ - even though this does not involve 5G, it just shows that we are moving in that direction.
  • February 2020: 5G-aided remote CT scans used to diagnose COVID-19 patients in China (link)
  • February 2020: Verizon teamed with Emory Healthcare to test new 5G use cases for the medical industry at the latter’s Innovation Hub in Atlanta, in a bid to discover how the technology can be used to improve patient care. The collaboration will explore applications including connected ambulances; remote physical therapy; medical imaging; and use of AR and VR for training. (link)
  • February 2020: Vodafone 5G Healthcare – Conference & Experience Day (link)
  • November 2019: TIM enables first live remote-surgery consultation using 5G immersive reality (link)
  • October 2019: Along with a hospital in Malaga, Telef√≥nica has presented what it claims is the first expert assistance system for medical interventions that runs on 5G. (link and video)
  • September 2019: Mobile Future Forward 2019 - World's First Remote VR Surgery Demo conducted on Sept 4th, 2019 in Seattle by Chetan Sharma, James Youngquist, Evie Powell, Nissim Hadar, David Colmenares, and Gabe Jones. (link)

Finally, a nice video on Benefits of 5G for Healthcare Technology by T-Mobile



Related Posts:

Friday, 20 March 2020

Real-life 5G Use Cases for Verticals from China

GSMA have recently published a series of reports related to China. This includes the 'The Mobile Economy China' report as well as reports on ‘Impacts of mmWave 5G in China’, ‘5G use cases for verticals China 2020’ and ‘Powered by SA case studies’. They are all available here.

China currently has 1.65bn subscribers (Excluding licensed cellular IoT) which is expected to grow to 1.73bn in 2025. The report quotes 1.20bn unique mobile subscribers that is expected to grow to 1.26bn by 2025. With a population of 1.44 billion, this would be assuming everyone over 10 years has a smartphone. 2G and 3G is being phased out so only 4G and 5G will be around in 2025. This would be different for IoT.

The 5G Use Cases for Verticals China 2020 report is comprised of 15 outstanding examples of 5G-empowered applications for verticals, ranging from industrial manufacturing, transportation, electric power, healthcare, education, to content creation, and zooms into the practical scenarios, technical features, and development opportunities for the next generation technology. Every use case represents the relentless efforts of 5G pioneers who are open, cooperative, and innovative.

  1. Flexible Smart Manufacturing with 5G Edge Computing (RoboTechnik, China Mobile, Ericsson)
  2. 5G Smart Campus in Haier Tianjin Washing Machine Factory (China Mobile, Haier)
  3. Aircraft Surface Inspection with 5G and 8K at Commercial Aircraft Corporation of China (Comac, China Unicom, Huawei)
  4. Xinfengming Group’s Smart Factory Based on MEC Technology (Xinfengming, China Mobile, ZTE)
  5. SANY Heavy Industry 5G and Smart Manufacturing (Sany, China Mobile, China Telecom, ZTE)
  6. Xiangtan Iron & Steel's 5G Smart Plant (Xisc, China Mobile, Huawei)
  7. The Tianjin 5G Smart Port (Tianjin, China Unicom, ZTE, Trunk)
  8. 5G Intelligent Connected Vehicle Pilot in Wuhan (China Mobile, Huawei, et al.)
  9. 5G BRT Connected Vehicle-Infrastructure Cooperative System (China Unicom, DTmobile, et al.)
  10. 5G for Smart Grid (China Mobile, Huawei, et al.)
  11. Migu's "Quick Gaming" Platform (China Mobile, et al.)
  12. 5G Cloud VR Demonstration Zone in Honggutan, Nanchang, Jiangxi Province (Besttone, China Telecom, Huawei)
  13. 5G Cloud VR Education Application Based on AI QoE (China Telecom, Nokia, et al.)
  14. China MOOC Conference: 5G + Remote Virtual Simulation Experiment (China Unicom, Vive HTC, Dell Technologies, et al.)
  15. 5G-empowered Hospital Network Architecture Standard (CAICT, China Mobile, China Telecom, China Unicom, Huawei, et al.)

They are all detailed in the report here.

I have written about 5G Use Cases in a blog post earlier, which also contains a video playlist of use cases from around the world. Not many from China in there at the moment but should be added as and when they are available and I discover them.


Related Posts:

Thursday, 14 September 2017

NB-IoT based smart bicycle lock


Huawei (see here and here) has partnered with China Telecom and Bike sharing company called Ofo.

ofo developed an IoT smart lock based on NB-IoT technology that lowers power consumption, enables wide coverage, and slashes system resource delays at low cost. NB-IoT lets ofo ensure it has bikes located at key locations when commuter demand is highest. Meanwhile, bikes can be unlocked in less than a second. Both improvements have greatly boosted user satisfaction.

ofo and its partners added key technologies to ofo’s own platform. These included the commercial network provided by China Telecom, and Huawei’s intelligent chip-based NB-IoT solution. When launching its NB-IoT solution earlier this year, ofo founder and CEO Dai Wei said that the cooperation between ofo, Huawei, and China Telecom is a “mutually beneficial joint force of three global leading enterprises.”

At the core is Huawei’s IoT solution, which includes smart chips, networking, and an IoT platform. The solution provides strong coverage in poor-signal areas and a network capacity that’s more than one hundred times stronger than standard terminals. The payment process has dropped from 25 seconds to less than 5, while battery life has been lengthened from 1 or 2 months to more than 2 years, saving costs and reducing the need for frequent maintenance.

ofo’s cooperation with Huawei on NB-IoT smart locks bodes well for improving the industry as whole. Huawei’s technology optimizes lifecycle management for locks, while the sensors on the locks collect information such as equipment status, user data, and operating data. They connect the front- and back-end industrial chains to achieve intelligent business management, enable the bikes to be located in hot spots, facilitate rapid maintenance, and boost marketing and value-added services.

This video gives an idea of how this works:



As per Mobile World Live:

Ofo co-founder Xue Ding said during a presentation the high power efficiency and huge capacity of NB-IoT make the technology ideal to deliver its smart locks, which are really the brains of its operations.

The company offers what is termed station free pushbike hire, meaning bikes can be collected and deposited from any legal parking spot. Users can locate bikes using their smartphone, and unlock it by scanning a barcode.

However, the process can be interrupted by mobile network congestion or if signals are weak – for example in remote areas: “Using NB-IoT, users will not be stuck because of inadequate capacity,” Xue said.
...
Xiang Huangmei, a VP at China Telecom’s Beijing branch, said the low power consumption of the NB-IoT chip in the lock means the battery will last eight years to ten years, so it will never need to be replaced during the standard lifecycle of an Ofo bike.

The NB-IoT network, deployed on the 800MHz band, offers good indoor and outdoor coverage, the VP said citing car parks as an example. One base station can support 100,000 devices over an area of 2.5 square-km.

Finally, to know which operator is supporting which IoT technology, see the IoT tracker here.

Thursday, 1 June 2017

Smartphones, Internet Trends, etc

Every few years I add Mary Meeker's Internet Trends slides on the blog. Interested people can refer to 2011 and  2014 slide pack to see how world has changed.


One of the initial slide highlights that the number of smartphones are reached nearly 3 billion by end of 2016. If we looked at this excellent recent post by Tomi Ahonen, there were 3.2 billion smartphones at the end of Q1 2017. Here is a bit of extract from that.

SMARTPHONE INSTALLED BASE AT END OF MARCH 2017 BY OPERATING SYSTEM

Rank . OS Platform . . . . Units . . . . Market share  Was Q4 2016
1 . . . . All Android . . . . . . . . . . . . 2,584 M . . . 81 % . . . . . . ( 79 %)  
a . . . . . . Pure Android/Play . . . . 1,757 M . . . 55%
b . . . . . . Forked Anroid/AOSP . . . 827 M . . . 26%
2 . . . . iOS  . . . . . . . . . . . . . . . . . . 603 M . . . 19 % . . . . . . ( 19 %) 
Others . . . . . . . . . . . . . . . . . . . . . . 24 M  . . . . 1 % . . . . . . (   1 %)
TOTAL Installed Base . 3,211 M smartphones (ie 3.2 Billion) in use at end of Q1, 2017

Source: TomiAhonen Consulting Analysis 25 May 2017, based on manufacturer and industry data


BIGGEST SMARTPHONE MANUFACTURERS BY UNIT SALES IN Q1 2017

Rank . . . Manufacturer . Units . . . Market Share . Was Q4 2016 
1 (2) . . . Samsung . . . .  79.4 M . . 22.7% . . . . . . . ( 17.9% ) 
2 (1) . . . Apple  . . . . . . . 50.8 M . . 14.5% . . . . . . . ( 18.0% ) 
3 (3) . . . Huawei  . . . . . . 34.6 M . . . 9.9% . . . . . . . (10.4% ) 
4 (4) . . . Oppo . . . . . . . . 28.0 M . . . 8.0% . . . . . . . (   7.1% ) 
5 (5) . . . Vivo . . . . . . . . . 22.0 M . . . 6.3% . . . . . . . (   5.6% ) 
6 (9) . . . LG  . . . . . . . .  . 14.8 M . . . 4.2% . . . . . . . (   3.3% ) 
7 (7) . . . Lenovo .  . . . . . 13.2 M . . . 3.8% . . . . . . . (   3.8% )
8 (8) . . . Gionee . . . . . . . .9.6 M . . . 2.7% . . . . . . .  (   3.5% )
9 (6) . . . ZTE  . . . . . . . . . 9.2 M . . . 2.6% . . . . . . . (   5.2% ) 
10 (10) . TCL/Alcatel . . .  8.7 M . . . 2.5% . . . . . . . (  2.4% ) 
Others . . . . . . . . . . . . . . 80.2 MTOTAL . . . . . . . . . . . . . 350.4 M

Source: TomiAhonen Consulting Analysis 25 May 2017, based on manufacturer and industry data


This year, the number of slides have gone up to 355 and there are some interesting sections like China Internet, India Internet, Healthcare, Interactive games, etc. The presentation is embedded below and can be downloaded from slideshare



Sunday, 5 July 2015

A tale of two Smart Cities

Over the last few months I heard quite a few talks about Smart Cities. Here are two that I thought its worth posting and a very good TEDx talk at the bottom



I think we all agree that more and more people will move from rural to urban areas and the cities will not only grow in population but also in size. The infrastructure will have to grow to be able to cope with the influx of people and increased demand on services.



I guess in most developed nations we have the 1.0 Era Digital City which is long way away from the 3.0 Era Smart City.



To be a full fledged 3.0 Smart City, every aspect of our life may need to evolve into "Smart". Anyway, here is the complete presentation:





While IoT would be important, access, big data, applications, etc. all will have a role to play.



If you want to find out more about the Milton Keynes smart city, also see this video on Youtube. There are driverless pods and other autonomous cars which may be considered as initial step towards smart cities, see this interesting video here.

Finally here is the TEDx talk about designing these smart cities for future:


Sunday, 1 June 2014

Internet Trends 2014, by Mary Meeker



Its June, time for the Internet Trends update by Mary Meeker, KPCB. Last year's update has crossed 3 million views on Slideshare. So many interesting slides, difficult to pick up some of the best ones to add here. I have selected a few that I really liked. The first being the growth in Smartphones and Tablets, as compared to PC's and Television's.



The other very interesting point to highlight is that the number of SMS's are decreasing and the number of OTT messages are rising. Just two days back, BITKOM, Germany released the news that SMS's are declining drastically in Germany. OTT's are taking over, rightly so.



Finally, with people doing too much multi-tasking, the above slide highlights what people are doing while watching TV.

Here is the complete set of slides:



Related news on the web:
  • Forbes: Are We In A Tech Bubble? Not Really, According To Mary Meeker's Latest Report
  • Business Insider: Mary Meeker's Stunning 2014 Presentation On The State Of The Web
  • Quartz: Mary Meeker’s 2014 internet trends report: all the slides plus highlights
  • Forbes: Mary Meeker's Web Video Love Affair
  • Guardian: Mary Meeker: 2015 will be about 'findable data' and mobile sensors
  • Business Insider, Australia: In 3 Big Slides, Here's Why Mary Meeker Is Optimistic About The Future Of American Healthcare
  • Tech2: What Mary Meeker’s 2014 trends report says about India’s Internet usage

Tuesday, 18 February 2014

The Rise and Rise or '4G' - Update on Release-11 & Release-12 features

A recent GSMA report suggests that China will be a significant player in the field of 4G with upto 900 million 4G users by 2020. This is not surprising as the largest operator, China Mobile wants to desperately move its user base to 4G. For 3G it was stuck with TD-SCDMA or the TDD LCR option. This 3G technology is not as good as its FDD variant, commonly known as UMTS.

This trend of migrating to 4G is not unique to China. A recent report (embedded below) by 4G Americas predicts that by the end of 2018, HSPA/HSPA+ would be the most popular technology whereas LTE would be making an impact with 1.3 Billion connected devices. The main reason for HSPA being so dominant is due to the fact that HSPA devices are mature and are available now. LTE devices, even though available are still slightly expensive. At the same time, operators are taking time having a seamless 4G coverage throughout the region. My guess would be that the number of devices that are 4G ready would be much higher than 1.3 Billion.

It is interesting to see that the number of 'Non-Smartphones' remain constant but at the same time, their share is going down. It would be useful to breakdown the number of Smartphones into 'Phablets' and 'non-Phablets' category.

Anyway, the 4G Americas report from which the information above is extracted contains lots of interesting details about Release-11 and Release-12 HSPA+ and LTE. The only problem I found is that its too long for most people to go through completely.

The whitepaper contains the following information:

3GPP Rel-11 standards for HSPA+ and LTE-Advanced were frozen in December 2012 with the core network protocols stable in December 2012 and Radio Access Network (RAN) protocols stable in March 2013. Key features detailed in the paper for Rel-11 include:
HSPA+:
  • 8-carrier downlink operation (HSDPA)
  • Downlink (DL) 4-branch Multiple Input Multiple Output (MIMO) antennas
  • DL Multi-Flow Transmission
  • Uplink (UL) dual antenna beamforming (both closed and open loop transmit diversity)
  • UL MIMO with 64 Quadrature Amplitude Modulation (64-QAM)
  • Several CELL_FACH (Forward Access Channel) state enhancements (for smartphone type traffic) and non-contiguous HSDPA Carrier Aggregation (CA)
LTE-Advanced:
  • Carrier Aggregation (CA)
  • Multimedia Broadcast Multicast Services (MBMS) and Self Organizing Networks (SON)
  • Introduction to the Coordinated Multi-Point (CoMP) feature for enabling coordinated scheduling and/or beamforming
  • Enhanced Physical Control Channel (EPDCCH)
  • Further enhanced Inter-Cell Interference Coordination (FeICIC) for devices with interference cancellation
Finally, Rel-11 introduces several network and service related enhancements (most of which apply to both HSPA and LTE):
  • Machine Type Communications (MTC)
  • IP Multimedia Systems (IMS)
  • Wi-Fi integration
  • Home NodeB (HNB) and Home e-NodeB (HeNB)
3GPP started work on Rel-12 in December 2012 and an 18-month timeframe for completion was planned. The work continues into 2014 and areas that are still incomplete are carefully noted in the report.  Work will be ratified by June 2014 with the exception of RAN protocols which will be finalized by September 2014. Key features detailed in the paper for Rel-12 include:
HSPA+:
  • Universal Mobile Telecommunication System (UMTS) Heterogeneous Networks (HetNet)
  • Scalable UMTS Frequency Division Duplex (FDD) bandwidth
  • Enhanced Uplink (EUL) enhancements
  • Emergency warning for Universal Terrestrial Radio Access Network (UTRAN)
  • HNB mobility
  • HNB positioning for Universal Terrestrial Radio Access (UTRA)
  • Machine Type Communications (MTC)
  • Dedicated Channel (DCH) enhancements
LTE-Advanced:
  • Active Antenna Systems (AAS)
  • Downlink enhancements for MIMO antenna systems
  • Small cell and femtocell enhancements
  • Machine Type Communication (MTC)
  • Proximity Service (ProSe)
  • User Equipment (UE)
  • Self-Optimizing Networks (SON)
  • Heterogeneous Network (HetNet) mobility
  • Multimedia Broadcast/Multicast Services (MBMS)
  • Local Internet Protocol Access/Selected Internet Protocol Traffic Offload (LIPA/SIPTO)
  • Enhanced International Mobile Telecommunications Advanced (eIMTA) and Frequency Division Duplex-Time Division Duplex Carrier Aggregation (FDD-TDD CA)
Work in Rel-12 also included features for network and services enhancements for MTC, public safety and Wi-Fi integration, system capacity and stability, Web Real-Time Communication (WebRTC), further network energy savings, multimedia and Policy and Charging Control (PCC) framework.


Thursday, 30 May 2013

Internet Trends by Mary Meeker at #D11

The last time I posted the presentation by Mary Meeker was back in 2011 but the things have moved on and its amazing to see some of the things that have changed. I think the slide that summarises what I mean is as follows:

Nomophobia and FOMO are a big problem and I see this day in day out working in this industry.

The slide pack which was actually posted yesterday has already crossed 550K as I write this, in just 1 day. So you can understand how eagerly awaited event this has become every year.



To download the above, click on the Slideshare icon and then you can save from Slideshare site.

If you want to watch the video of her presentation, its available on All things digital website here.

Monday, 16 August 2010

Nokia Siemens Networks demonstrate TD-LTE leadership

Since last few months, NSN have been showing that they are serious about TD-LTE as well. Back in June they made an announcement that they have integrated TD-LTE in their networks so that it can support concurrent use of TD-SCDMA and TD-LTE. They opened a TD-LTE lab in China as well earlier this year.

Motorola is another big player in the TD-LTE arena and I have blogged about them as well. With the purchase of Motorola Networks by NSN, it got additional experience and capability to be the next TD-LTE leader. With this renewed confidence, it ended the joint venture with Huawei which started back in 2005 with TD-SCDMA technology.

The following is press release from NSN couple of days back:

Nokia Siemens Networks has proven its leading role in advancing TD-LTE as it met the complete TD-LTE test specifications defined by China’s Ministry of Industry and Information Technology (MIIT). The successful completion of the trial in the 2.3GHz band at the MIIT lab in Beijing, China, marks an important milestone in the commercialization of TD-LTE. After the test, Nokia Siemens Networks also achieved the world’s first high-definition TD-LTE video call, including handover, with a Samsung TD-LTE device.

The high-definition video call demo showcased interoperability between Nokia Siemens Networks’ LTE infrastructure and Samsung’s TD-LTE USB dongle, and marks a definitive step toward ensuring early availability of a functioning TD-LTE ecosystem for commercial deployments.

“We’ve achieved excellent results from this test and are happy to partner with Nokia Siemens Networks in driving the TD-LTE ecosystem further,” said Mr. Tong Wang, president of Beijing Samsung Telecom R&D Center. “Commercial readiness of devices is a key indicator for the success of a new technology and the current test results show that we are now well prepared for TD-LTE.”

“Meeting TD-LTE test specifications defined by MIIT and achieving the first high-definition video call with handover, are key milestones in our list of achievements, added Paul Pan, head of Network Systems, Greater China Region, Nokia Siemens Networks. “We will continue to collaborate with partners to accelerate our progress toward a comprehensive deployment of TD-LTE.”

Nokia Siemens Networks is at the forefront of TD-LTE development and commercialization, actively working with telecom operators and device manufacturers. The company recently announced the first TD-LTE interoperability data call with a prototype TD-LTE USB dongle from Samsung and the first TD-LTE video call between Shanghai and Taipei.


Ericsson is now going to probably have tough competition from NSN.

Friday, 16 July 2010

Mobile TV in China not as successful as initially thought


A wise consultant once told me that when the analysts were asking people if they would be interested in Mobile TV, nearly everyone said yes. What they didnt ask is what those people understood by Mobile TV. From a lot of users perspective, Mobile TV meant Youtube which is not what mobile community understands it to be.

Not long back we talked about Mobile and IP TV becoming popular in China. According to recent news in InformationWeek, it falling much short of expectations:

Commercial development of China's mobile TV service is falling far short of expectations. Of the 1.5 million users of China multimedia mobile broadcasting (CMMB), less than 3% are actually paying for the service, creating something of an embarrassment for China Mobile, the main backer of the standard.
CMMB was developed by the State Administration of Radio, Film, and Television (SARFT) based on Satellite and Terrestrial Interactive Multiservice Infrastructure (STiMi) developed by TiMiTech, a company belonging to the Chinese Academy of Broadcasting Science. The standard was announced in October 2006 and is similar to Europe's Digital Video Broadcast-Handheld (DVB-H) broadcasting standard. Since then CMMB has been rigorously promoted by China Mobile and is bundled with its 3G network.
Sources say that by the end of the second quarter, 2010 domestic sales of CMMB handsets were around 1.5 million, approximately 30% of total 3G mobile phone sales at China Mobile, and much lower than the 50% target set by the operators. The service has been operational for more than a year but formal fees have only recently been introduced, which range from $1 to $3 per month. The small take-up of the service since fees were introduced does not bode well for the future of mobile television in China.
China Mobile was hoping to attract more paying customers with its World Cup offering, but this may have been wishful thinking. Analysts believe that the company's broadcasting and mobile communications divisions are lacking in unified policy and have no clear development path.
With widespread proliferation of cheaper "shanzhai" -- or copycat -- handsets, it is difficult to reach all potential customers. The CMMB technology is expensive and can only be found in specific dedicated smartphones.

Furthermore, there are more attractive and diverse streaming packages available from third parties. A clear advantage needs to be provided in order to entice users to use CMMB. China Mobile insiders say that they need to be following the advertising model used by mobile broadcasters in other countries because people are unlikely to pay for content, especially if they can find that content for free from a regular TV or desktop computer.

Wednesday, 23 June 2010

'Internet Kill' switch and IPv9

Slightly off topic today as I was going through the pile of information and I caught attention of this news article that for some reason has not been reported by major newspapers. The article says that the president of USA will have the 'Kill' switch to kill off internet (temporarily i guess) in case of a major emergency like war, etc. Joseph Liberman who proposed this idea has since then backed away saying that he meant that parts of Internet can be disconnected like they do in China.

This brought into attention the other article I was going through about IPv9. Yes thats correct, I did write IPv9. I first heard about IPv9 back in 2004-5 but then it was dismissed as nothing serious. Apparently Chinese government backed Ministry of Information Industry (MII) has been promoting this IPv9. According to an old TelecomAsia.net article:

Back in July 2004, reports of a Chinese IPv9 prompted a bewildered reaction from internet godfather Vint Cerf. 'What could this possibly be about‾ As far as I know, IANA [Internet Assigned Numbers Authority] has not allocated the IPv9 designation to anyone. IPv9 is not an Internet standard. Could you please explain what is intended here‾" he wrote in an email to China's internet leaders.

The idea was dismissed as a "rogue" project with no official backing. But it is back on the table led, now as then by Xie Jianping, the head of the Shanghai Universal Institute of Chemical Technology and more recently in charge of the decimal network standards team in the MII's science and technology department.

The project returned to prominence at a press conference at the unusual location of the Party Central School in Beijing two weeks ago, where Xie announced that the networking technology had been successfully tested by China Netcom and the Ministry of Commerce.

He asserted that the project is all about China wresting control of its own IP networks away from US dominance for which, he claimed, China was paying 500 billion yuan a year.

The system reportedly uses numerical addressing to make China "the only country able to unify domain names, IP addresses and MAC addresses" into a single, metric system, according to Xinhua. Without any explanation, Xinhua said it also made China the only country outside the US "to have root servers and IP address hardware connectivity servers and its own domain name, IP address and MAC address resources".

In an interview with a skeptical Sina reporter, Xie and denied the project was another Hanxin - a reference to a fraudulent state-backed chip project.

"Our IPv9 has gone through testing and assessment," he said adding that he could not give any more detail but would "make public some material at the necessary time."

But the system, or what little is known of it, has plenty of doubters at home. Sina said critics of the system complain that turning domain names and brand names into numerals is a "backwards step" for the net.

The fact that the decimal network appears to asset control over root servers is bound to alarm internet governance bodies around the world.

And whatever else might be said about it, the project is clearly backed by the MII. "IPv9" raises more questions than answers.

So it looks like the Chinese government may have been expecting some 'Kill Switch' in the future by the US government and is probably creating a backup based on a new approach so that the users within China remain connected to their Internet.

Any thoughts and opinions are more than welcome...