Showing posts sorted by relevance for query NTN. Sort by date Show all posts
Showing posts sorted by relevance for query NTN. Sort by date Show all posts

Wednesday, 31 May 2023

New 5G NTN Spectrum Bands in FR1 and FR2

Release-17 includes two new FR1 bands for NTN; n255 (a.k.a. NTN 1.6GHz) and n256 (a.k.a. NTN 2GHz). The picture is from a slide in Rohde & Schwarz presentation available here. Quoting from an article by Reiner Stuhlfauth, Technology Manager Wireless, Rohde & Schwarz:

Currently, several frequency ranges are being discussed within 3GPP for NTN. Some are in the FR1 legacy spectrum, and some beyond 10 GHz and FR2. The current FR1 bands discussed for NTN are:

  • The S-band frequencies from 1980 to 2010 MHz in uplink (UL) direction and from 2170 to 2200 MHz in downlink (DL) direction (Band n256).
  • The L-band frequencies from 1525 to 1559 MHz DL together with 1626.5 to 1660.5 MHz for the UL (Band n255).1

These frequency ranges have lower path attenuation, and they’re already used in legacy communications. Thus, components are available now, but the bands are very crowded, and the usable bandwidth is restricted. Current maximum bandwidth is 20 MHz with up to 40-MHz overall bandwidth envisaged in the future [TR 38.811].

As far as long-term NTN spectrum use is concerned, 3GPP is discussing NR-NTN above 10 GHz. The Ka-band is the highest-priority band with uplinks between 17.7 and 20.2 GHz and downlinks between 27.5 and 30 GHz, based on ITU information regarding satellite communications frequency use.2 Among current FR2 challenges, one is that some of the discussed bands fall into the spectrum gap between FR1 and FR2 and that NTN frequencies will use FDD duplex mode due to the long roundtrip time.

Worth highlighting again that the bands above, including n510, n511 and n512 are all FDD bands due to the long round trip times.

The latest issue of 3GPP highlight magazine has an article on NTN as well. Quoting from the article:

The NTN standard completed as part of 3GPP Release 17 defines key enhancements to support satellite networks for two types of radio protocols/interfaces:

  • 5G NR radio interface family also known as NR-NTN
  • 4G NB-IoT & eMTC radio interfaces family known as IoT-NTN

These critical enhancements including adaptation for satellite latency and doppler effects have been carefully defined to support a wide range of satellite network deployment scenarios and orbits (i.e., LEO, MEO and GEO), terminal types (handheld, IoT, vehicle mounted), frequency bands, beam types (Earth fixed/Earth moving) and sizes. The NTN standard also addresses mobility procedures across both terrestrial and non-terrestrial network components. Release 17 further includes Radio Frequency and Radio Resource Management specifications for terminals and satellite access nodes operating in two FR1 frequency ranges allocated to Mobile Satellite Services (i.e., n255 and n256).

You can read it here.

Related Posts

Tuesday, 18 January 2022

3GPP 5G Non Terrestrial Networks (NTN) Standardization Update

We have looked at 5G Non Terrestrial Networks (NTN) in many different posts in our blogs. If you are new to this topic then this tutorial with a video is a good place to start or just follow this IEEE Comsoc article or this short update from R&S here.

Nicolas Chuberre is the rapporteur of the NR_NTN_solutions work item (TSG RAN) and of the FS-5GET study item (WG SA1) from Thales Alenia Space. In the October 2021 issue of 3GPP Highlights newsletter, he along with Munira Jaffar, Lead delegate representing EchoStar and Hughes Standards in ESOA (EMEA Satellite Operators Association) Standards Working Group, wrote a summary of 'Status of NTN & Satellite in 3GPP Releases 17 & 18'.

Quoting from the article:

The approval of normative activities on Non-Terrestrial Networks (NTN) in Rel-17 has generated growing interest in the topic. The Rel-17 NTN work items are supported by a wide range of vendors (terminal, chipset, network), as well as service providers from both the mobile and space industries and vertical user groups including ESOA.

The Rel-17 NTN and satellite work items in Technical Specification Group (TSG) RAN and TSG SA have been progressing towards the goal of satellite inclusion in 3GPP technical specifications. The focus is on transparent payload architecture with FDD systems where all UEs are assumed to have GNSS capabilities. The normative phase includes adaptation to the physical & access layer aspects, radio access network and system architecture, radio resource management, and RF requirements for targeted satellite networks operating at LEO, MEO or GEO orbits.

With an expected completion date of March 2022, the 3GPP Rel-17 specifications will support New Radio (NR) based satellite access deployed in FR1 bands serving handheld devices for global service continuity. Equally exciting, the 3GPP Rel-17 specification will support NB-IoT and eMTC based satellite access to address massive Internet of Things (IoT) use cases in areas such as agriculture, transport, logistics and many more. 

This joint effort between mobile and satellite industries will enable the full integration of satellite in the 3GPP ecosystem and define a global standard for future satellite networks. This will address the challenges of reachability and service continuity in unserved/underserved areas, enhance reliability through connectivity between various access technologies, and improve network resilience and dependability in responding to natural and manmade disasters.

Upon completion of Rel-17 the long-awaited standard for satellite networks serving handheld devices should be in place by 2022, with commercial product availability expected sometime in 2024. Including satellite as part of the 3GPP specifications will support the promise of worldwide access to 5G services and drive explosive growth in the satellite industry. 

Looking ahead, ESOA members and other NTN stakeholders have started discussions during the 3GPP Rel-18 June workshop and are continuing to work on a further list of enhancements for both NR-NTN and IoT-NTN to be considered in Rel-18. Plans are also underway to further define the enablers for NR based satellite access in bands above 10 GHz to serve fixed and moving platforms (e.g., aircraft, vessels, UAVs) as well as building- mounted devices (e.g., businesses and premises). The goal of these efforts is to further optimize satellite access performance, address new bands with their specific regulatory requirements, and support new capabilities and services as the evolution of 5G continues.

At Mobile Korea 2021, Nicolas Chuberre gave a talk on '3GPP NTN standardization: past, current and future'. The talk nicely summarizes Release-17 progress and the features planned for 3GPP Release-18. His talk is embedded below:

Related Posts:

Tuesday, 10 December 2024

Tutorial Session on Non-Terrestrial Networks (NTNs) and 3GPP Standards from 5G to 6G

Over five years ago, we introduced the concept of Non-Terrestrial Networks (NTN) in our NTN tutorial and wrote IEEE ComSoc article, "The Role of Non-Terrestrial Networks (NTN) in Future 5G Networks." Since then, the landscape has seen remarkable transformations with advancements in standards, innovations in satellite connectivity, and progress in real-world applications.

The 2024 Global Forum on Connecting the World from the Skies, held on November 25–26, served as a pivotal platform for stakeholders across the spectrum; policymakers, industry leaders, and technical experts. Jointly organized by the International Telecommunication Union (ITU) and Saudi Arabia’s Communications, Space & Technology Commission (CST), the event underscored NTNs' growing importance in advancing global connectivity.

A key highlight of the forum was Tutorial Session 2, delivered by Gino Masini, Principal Researcher, Standardization at Ericsson. The session, titled "Non-Terrestrial Networks and 3GPP Standards from 5G to 6G," provided an in-depth look at the evolution of NTNs and their integration into mobile networks.

Key Takeaways from the Session included:

  • 3GPP Standardization Milestones:
    • Release 17: NTN integration began, paving the way for seamless 5G coverage.
    • Release 18: Enhanced features and capabilities, focusing on improved satellite-terrestrial convergence.
    • Release 19 (Ongoing): Lays the foundation for natively integrated NTN frameworks in 6G.
  • Unified Networks in 6G: A focus on radio access network architecture demonstrated how NTN can evolve from a supporting role to becoming an intrinsic component of future 6G systems.
  • Industry Impact: The session highlighted how convergence between satellite and terrestrial networks is no longer aspirational but a tangible reality, fostering a truly unified global connectivity ecosystem.

With NTNs now integral to 3GPP's vision, the groundwork has been laid for scalable satellite connectivity that complements terrestrial networks. The insights shared at the forum emphasize the importance of collaboration across industry and standards organizations to unlock the full potential of NTNs in both 5G and 6G.

For those interested, the full tutorial slides and session video are embedded below.

Gino has kindly shared the slides that can be downloaded from here.

Related Posts

Wednesday, 14 August 2024

3GPP Release 18 Description and Summary of Work Items

The first official release of 3GPP TR 21.918: "Release 18 Description; Summary of Rel-18 Work Items" has been published. It's the first official version of 5G-Advanced. Quoting from the report: 

Release 18 specifies further improvements of the 5G-Avanced system. 

These improvements consist both in enhancements of concepts/Features introduced in the previous Releases and in the introduction of new topics.

Some of the key improvements are:

  • a further integration of the Satellite (NTN) access (introduced in Rel-17) in the 5G System (5GS), 
  • a more efficient support of Internet of Things (IoT), Machine-Type Communication (MTC), including by satellite coverage
  • and also several aspects of proximity communication and location (Sidelink, Proximity, Location and Positioning, better support of the industrial needs (Verticals, Industries, Factories, Northbound API), Multicast and Broadcast Services (MBS), Network Slicing or Uncrewed Aerial Vehicles (UAV).

As for the new topics, some of the key aspects are:

  • Energy Efficiency (EE)
  • Artificial Intelligence (AI)/Machine Learning (ML)
  • eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive communications

The following list is from the v1.0.0 table of contents to make it easier to find the list of topics. If it interests you, download the latest version technical report from the directory here.

5 Satellite / Non-Terrestrial Network (NTN)
5.1 General aspects
5.1.1 User plane: “5G system with satellite backhaul”
5.1.2 Discontinuous coverage: “Satellite access Phase 2”
5.1.3 Radio: "NR NTN enhancements"
5.1.4 Charging and Management aspects of Satelite
5.2 Specific aspects
5.2.1 IoT (Internet of Things) NTN enhancements
5.2.2 Guidelines for Extra-territorial 5G Systems
5.2.3 5G system with satellite access to Support Control and/or Video Surveillance
5.2.4 Introduction of the satellite L-/S-band for NR
5.2.5 Other band-related aspects of satellite

6 Internet of Things (IoT), Machine-Type Communication (MTC)
6.1 Personal IoT and Residential networks
6.2 Enhanced support of Reduced Capability (RedCap) NR devices
6.3 NR RedCap UE with long eDRX for RRC_INACTIVE State
6.4 Application layer support for Personal IoT Network
6.5 5G Timing Resiliency System
6.6 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
6.7 Adding new NR FDD bands for RedCap in Rel-18
6.8 Signal level Enhanced Network Selection
6.9 IoT NTN enhancements

7 Energy Efficiency (EE)
7.1 Enhancements of EE for 5G Phase 2
7.2 Network energy savings for NR
7.3 Smart Energy and Infrastructure

8 Uncrewed Aerial Vehicles (UAV), UAS, UAM
8.1 Architecture for UAV and UAM Phase 2
8.2 Architecture for UAS Applications, Phase 2
8.3 NR support for UAV
8.4 Enhanced LTE Support for UAV

9 Sidelink, Proximity, Location and Positioning
9.1 5GC LoCation Services - Phase 3
9.2 Expanded and improved NR positioning
9.3 NR sidelink evolution
9.4 NR sidelink relay enhancements
9.5 Proximity-based Services in 5GS Phase 2
9.6 Ranging-based Service and sidelink positioning
9.7 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
9.8 5G-enabled fused location service capability exposure

10 Verticals, Industries, Factories, Northbound API
10.1 Low Power High Accuracy Positioning for industrial IoT scenarios
10.2 Application enablement aspects for subscriber-aware northbound API access
10.3 Smart Energy and Infrastructure
10.4 Generic group management, exposure and communication enhancements
10.5 Service Enabler Architecture Layer for Verticals Phase 3
10.6 SEAL data delivery enabler for vertical applications
10.7 Rel-18 Enhancements of 3GPP Northbound and Application Layer interfaces and APIs
10.8 Charging Aspects of B2B
10.9 NRF API enhancements to avoid signalling and storing of redundant data
10.10 GBA_U Based APIs
10.11 Other aspects

11 Artificial Intelligence (AI)/Machine Learning (ML)
11.1 AI/ML model transfer in 5GS
11.2 AI/ML for NG-RAN
11.3 AI/ML management & charging
11.4 NEF Charging enhancement to support AI/ML in 5GS

12 Multicast and Broadcast Services (MBS)
12.1 5G MBS Phase 2
12.2 Enhancements of NR MBS
12.3 UE pre-configuration for 5MBS
12.4 Other MBS aspects

13 Network Slicing
13.1 Network Slicing Phase 3
13.2 Enhancement of NSAC for maximum number of UEs with at least one PDU session/PDN connection
13.3 Enhancement of Network Slicing UICC application for network slice-specific authentication and authorization
13.4 Charging Aspects of Network Slicing Phase 2
13.5 Charging Aspects for NSSAA
13.6 Charging enhancement for Network Slice based wholesale in roaming
13.7 Network Slice Capability Exposure for Application Layer Enablement
13.8 Other slice aspects

14 eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive
14.1 XR (eXtended Reality) enhancements for NR
14.2 Media Capabilities for Augmented Reality
14.3 Real-time Transport Protocol Configurations
14.4 Immersive Audio for Split Rendering Scenarios  (ISAR)
14.5 Immersive Real-time Communication for WebRTC
14.6 IMS-based AR Conversational Services
14.7 Split Rendering Media Service Enabler
14.8 Extended Reality and Media service (XRM)
14.9 Other XR/AR/VR items

15 Mission Critical and emergencies
15.1 Enhanced Mission Critical Push-to-talk architecture phase 4
15.2 Gateway UE function for Mission Critical Communication
15.3 Mission Critical Services over 5MBS
15.4 Mission Critical Services over 5GProSe
15.5 Mission Critical ad hoc group Communications
15.6 Other Mission Critical aspects

16 Transportations (Railways, V2X, aerial)
16.1 MBS support for V2X services
16.2 Air-to-ground network for NR
16.4 Interconnection and Migration Aspects for Railways
16.5 Application layer support for V2X services; Phase 3
16.6 Enhanced NR support for high speed train scenario in frequency range 2 (FR2)

17 User Plane traffic and services
17.1 Enhanced Multiparty RTT
17.2 5G-Advanced media profiles for messaging services
17.3 Charging Aspects of IMS Data Channel
17.4 Evolution of IMS Multimedia Telephony Service
17.5 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 3
17.6 UPF enhancement for Exposure and SBA
17.7 Tactile and multi-modality communication services
17.8 UE Testing Phase 2
17.9 5G Media Streaming Protocols Phase 2
17.10 EVS Codec Extension for Immersive Voice and Audio Services
17.11 Other User Plane traffic and services items

18 Edge computing
18.1 Edge Computing Phase 2
18.2 Architecture for enabling Edge Applications Phase 2
18.3 Edge Application Standards in 3GPP and alignment with External Organizations

19 Non-Public Networks
19.1 Non-Public Networks Phase 2
19.2 5G Networks Providing Access to Localized Services
19.3 Non-Public Networks Phase 2

20 AM and UE Policy
20.1 5G AM Policy
20.2 Enhancement of 5G UE Policy
20.3 Dynamically Changing AM Policies in the 5GC Phase 2
20.4 Spending Limits for AM and UE Policies in the 5GC
20.5 Rel-18 Enhancements of UE Policy

21 Service-based items
21.1 Enhancements on Service-based support for SMS in 5GC
21.2 Service based management architecture
21.3 Automated certificate management in SBA
21.4 Security Aspects of the 5G Service Based Architecture Phase 2
21.5 Service Based Interface Protocol Improvements Release 18

22 Security-centric aspects
22.1 IETF DTLS protocol profile for AKMA and GBA
22.2 IETF OSCORE protocol profiles for GBA and AKMA
22.3 Home network triggered primary authentication
22.4 AKMA phase 2
22.5 5G Security Assurance Specification (SCAS) for the Policy Control Function (PCF)
22.6 Security aspects on User Consent for 3GPP services Phase 2
22.7 SCAS for split-gNB product classes
22.8 Security Assurance Specification for AKMA Anchor Function Function (AAnF)
22.9 Other security-centric items

23 NR-only items
23.1 Not band-centric
23.1.1 NR network-controlled repeaters
23.1.2 Enhancement of MIMO OTA requirement for NR UEs
23.1.3 NR MIMO evolution for downlink and uplink
23.1.4 Further NR mobility enhancements
23.1.5 In-Device Co-existence (IDC) enhancements for NR and MR-DC
23.1.6 Even Further RRM enhancement for NR and MR-DC
23.1.7 Dual Transmission Reception (TxRx) Multi-SIM for NR
23.1.8 NR support for dedicated spectrum less than 5MHz for FR1
23.1.9 Enhancement of NR Dynamic Spectrum Sharing (DSS)
23.1.10 Multi-carrier enhancements for NR
23.1.11 NR RF requirements enhancement for frequency range 2 (FR2), Phase 3
23.1.12 Requirement for NR frequency range 2 (FR2) multi-Rx chain DL reception
23.1.13 Support of intra-band non-collocated EN-DC/NR-CA deployment
23.1.14 Further enhancements on NR and MR-DC measurement gaps and measurements without gaps
23.1.15 Further RF requirements enhancement for NR and EN-DC in frequency range 1 (FR1)
23.1.16 Other non-band related items
23.2 Band-centric
23.2.1 Enhancements of NR shared spectrum bands
23.2.2 Addition of FDD NR bands using the uplink from n28 and the downlink of n75 and n76
23.2.3 Complete the specification support for BandWidth Part operation without restriction in NR
23.2.4 Other NR band related topics

24 LTE-only items
24.1 High Power UE (Power Class 2) for LTE FDD Band 14
24.2 Other LTE-only items

25 NR and LTE items
25.1 4Rx handheld UE for low NR bands (<1GHz) and/or 3Tx for NR inter-band UL Carrier Aggregation (CA) and EN-DC
25.2 Enhancement of UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
25.3 Other items

26 Network automation
26.1 Enablers for Network Automation for 5G phase 3
26.2 Enhancement of Network Automation Enablers

27 Other aspects
27.1 Support for Wireless and Wireline Convergence Phase 2
27.2 Secondary DN Authentication and authorization in EPC IWK cases
27.3 Mobile IAB (Integrated Access and Backhaul) for NR
27.4 Further NR coverage enhancements
27.5 NR demodulation performance evolution
27.6 NR channel raster enhancement
27.7 BS/UE EMC enhancements for NR and LTE
27.8 Enhancement on NR QoE management and optimizations for diverse services
27.9 Additional NRM features phase 2
27.10 Further enhancement of data collection for SON (Self-Organising Networks)/MDT (Minimization of Drive Tests) in NR and EN-DC
27.11 Self-Configuration of RAN Network Entities
27.12 Enhancement of Shared Data ID and Handling
27.13 Message Service within the 5G system Phase 2
27.14 Security Assurance Specification (SCAS) Phase 2
27.15 Vehicle-Mounted Relays
27.16 SECAM and SCAS for 3GPP virtualized network products
27.17 SECAM and SCAS for 3GPP virtualized network products
27.18 MPS for Supplementary Services
27.19 Rel-18 enhancements of session management policy control
27.20 Seamless UE context recovery
27.21 Extensions to the TSC Framework to support DetNet
27.22 Multiple location report for MT-LR Immediate Location Request for regulatory services
27.23 Enhancement of Application Detection Event Exposure
27.24 General Support of IPv6 Prefix Delegation in 5GS
27.25 5G Timing Resiliency System
27.26 MPS when access to EPC/5GC is WLAN
27.27 Data Integrity in 5GS
27.28 Security Enhancement on RRCResumeRequest Message Protection

28 Administration, Operation, Maintenance and Charging-centric Features
28.1 Introduction
28.2 Intent driven Management Service for Mobile Network phase 2
28.3 Management of cloud-native Virtualized Network Functions
28.4 Management of Trace/MDT phase 2
28.5 Security Assurance Specification for Management Function (MnF)
28.6 5G performance measurements and KPIs phase 3
28.7 Access control for management service
28.8 Management Aspects related to NWDAF
28.9 Management Aspect of 5GLAN
28.10 Charging Aspects of TSN
28.11 CHF Distributed Availability
28.12 Management Data Analytics phase 2
28.12 5G System Enabler for Service Function Chaining
28.13 Other Management-centric items

29 Other Rel-18 Topics

If you find them useful then please get the latest document from here.

Related Posts

Sunday, 7 January 2018

Satellites & Non-terrestrial networks (NTN) in 5G


Satellites has been an area of interest of mine for a while as some of you know that I used to work as Satellite Applications & Services Programme manager at techUK. I have written about how I see satellites complementing the mobile networks here and here.

Its good to see that there is some activity in 3GPP going on about satellites & Non-terrestrial networks (NTN) in 5G. While there are some obvious roles that satellites can play (see pic above), the 5G work is looking to cover a lot more topics in details.

3GPP TR 38.913: Study on scenarios and requirements for next generation access technologies looks at 12 different scenarios, the ones relevant to this topic ate Air to ground, Light aircraft and Satellite to terrestrial.
3GPP TR 38.811: Study on New Radio (NR) to support non terrestrial networks (Release 15) covers this topic a bit more in detail. From looking at how satellites and other aerial networks work in general, it looks at the different NTN architecture options as can be seen above.
People looking to study this area in detail should probably start looking at this TR first.

3GPP also released a news item on this topic last week. It also refers to the above TR and a new one for Release 16. The following from 3GPP news:

The roles and benefits of satellites in 5G have been studied in 3GPP Release 14, leading to the specific requirement to support satellite access being captured in TS 22.261 - “Service requirements for next generation new services and markets; Stage 1”, recognizing the added value that satellite coverage brings, as part of the mix of access technologies for 5G, especially for mission critical and industrial applications where ubiquitous coverage is crucial.

Satellites refer to Spaceborne vehicles in Low Earth Orbits (LEO), Medium Earth Orbits (MEO), Geostationary Earth Orbit (GEO) or in Highly Elliptical Orbits (HEO).

Beyond satellites, Non-terrestrial networks (NTN) refer to networks, or segments of networks, using an airborne or spaceborne vehicle for transmission. Airborne vehicles refer to High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) - including tethered UAS, Lighter than Air UAS and Heavier than Air UAS - all operating at altitude; typically between 8 and 50 km, quasi-stationary.

These Non-terrestrial networks feature in TSG RAN’s TR 38.811 “Study on NR to support non-terrestrial networks”. They will:
  • Help foster the 5G service roll out in un-served or underserved areas to upgrade the performance of terrestrial networks
  • Reinforce service reliability by providing service continuity for user equipment or for moving platforms (e.g. passenger vehicles-aircraft, ships, high speed trains, buses)
  • Increase service availability everywhere; especially for critical communications, future railway/maritime/aeronautical communications
  • Enable 5G network scalability through the provision of efficient multicast/broadcast resources for data delivery towards the network edges or even directly to the user equipment

The objective of TR 38.811 is to study channel models, to define the deployment scenarios as well as the related system parameters and to identify and assess potential key impact areas on the NR. In a second phase, solutions for the identified key impacts on RAN protocols/architecture will be evaluated and defined.

A second study item, the “Study on using Satellite Access in 5G” is being addressed in Working Group SA1.  It shall lead to the delivery of the corresponding Technical Report TR 22.822 as part of Release 16.

This study will identify use cases for the provision of services when considering the integration of 5G satellite-based access components in the 5G system. When addressing the integration of (a) satellite component(s), use cases will identify new potential requirements for 5G systems addressing:
  • The associated identification of existing / planned services and the corresponding modified or new requirements
  • The associated identification of new services and the corresponding requirements
  • The requirements on set-up / configuration / maintenance of the features of UE’s when using satellite components related features as well for other components from the 5G system
  • Regulatory requirements when moving to (or from) satellite from (or to) terrestrial networks

Monday, 5 August 2019

An Introduction to Non-Terrestrial Networks (NTN)


I made a short introductory tutorial explaining what is meant by Non-Terrestrial Networks. There is is lot of work on this that is planned for Release-17. Slides and video below.






Related Posts:

Tuesday, 1 April 2025

5G-Advanced Store and Forward (S&F): Enabling Resilient IoT Communications via Satellite

Introduction

As the deployment of 5G networks continues to expand globally, the industry is already looking ahead to enhance capabilities through 5G-Advanced features. Among these innovations is the "Store and Forward" (S&F) functionality for Non-Terrestrial Networks (NTN), which represents a significant advancement for IoT applications utilizing satellite connectivity. This feature, specified in 3GPP Release 19, addresses one of the key challenges in satellite communications: maintaining service continuity during intermittent feeder link connectivity.

What is Store and Forward?

Store and Forward (S&F) satellite operation is designed to provide communication services for User Equipment (UE) under satellite coverage without requiring a simultaneous active feeder link connection to the ground segment. This capability is particularly relevant for delay-tolerant IoT services utilizing Non-Geostationary Orbit (NGSO) satellites.

In simple terms, S&F enables satellites to:

  • Collect data from IoT devices when they're in range
  • Store this data onboard the satellite
  • Forward the data to ground stations only when a connection becomes available

This approach fundamentally differs from traditional satellite operations, which require end-to-end connectivity at the moment of transmission.

Source3GPP TR 22.865: Technical Specification Group Services and System Aspects; Study on satellite access Phase 3;

Normal Operation vs. Store and Forward

To understand the significance of S&F, it's important to contrast it with the "normal/default satellite operation" mode:

Normal/Default Satellite Operation

In the traditional model, signalling and data traffic exchange between a UE with satellite access and the ground network requires both service and feeder links to be active simultaneously. This creates a continuous end-to-end connectivity path between the UE, satellite, and ground network.

Store and Forward Operation

Under S&F operation, the end-to-end exchange of signalling/data traffic is handled as a two-step process that doesn't need to occur concurrently:

  • Step A: Signalling/data exchange between the UE and satellite takes place even without the satellite being connected to the ground network. The satellite operates the service link without an active feeder link connection, collecting and storing data from IoT devices.
  • Step B: Later, when connectivity between the satellite and ground network is established, the stored communications are transmitted to the ground network.

This approach bears similarities to existing store-and-forward services like SMS, where end-to-end connectivity between endpoints isn't required simultaneously.

Technical Requirements for Store and Forward

The implementation of S&F relies heavily on regenerative satellite payloads, as opposed to transparent payloads. Here's why this distinction matters:

Regenerative Payload Advantages

A regenerative payload with an onboard gNB (next-generation NodeB) offers several critical capabilities:

  • Onboard Processing: The ability to process and store data directly on the satellite
  • Reduced Dependency: Less reliance on continuous ground segment connectivity
  • Enhanced Resilience: The NTN can function even if the feeder link is temporarily severed
  • Performance Improvements: Significant reductions in roundtrip time for all procedures between the gNB and UE

For S&F functionality, all or part of the core network functions must be placed on the satellite together with the gNB. This architectural change enables a new level of autonomous operation for satellite networks.

Applications for IoT

The Store and Forward capability is especially suited for delay-tolerant or non-real-time IoT applications. Examples include:

  • Environmental Monitoring: Collecting sensor data from remote locations
  • Asset Tracking: Monitoring the status of assets in transit through areas with limited ground infrastructure
  • Agricultural Sensing: Gathering data from widely distributed sensors in rural areas
  • Maritime and Offshore IoT: Supporting connected devices at sea where direct connectivity to ground networks is inconsistent

These use cases benefit from S&F's ability to ensure data is eventually delivered without requiring constant connectivity, which is particularly valuable for battery-powered IoT devices that need to conserve energy.

Relationship to Delay-Tolerant Networking

The concept of Store and Forward is well-established in delay-tolerant networking (DTN) and disruption-tolerant networking domains. These networking paradigms are designed to work in challenged environments where conventional protocols may fail due to long delays or frequent disruptions.

In the 3GPP context, S&F can be compared to SMS service, which doesn't require end-to-end connectivity between endpoints but only between the endpoints and the Short Message Service Centre (SMSC), which acts as an intermediate node handling storage and forwarding.

Future Implications

The introduction of S&F functionality represents an important step toward what Ericsson has called "data centers in the sky." By placing not just radio access network functions but also core network capabilities in space, we're moving toward satellite networks that can operate with greater autonomy and resilience.

This development also aligns with broader industry efforts to create truly global coverage through integrated ground and space networks. Combined with inter-satellite links (ISL), S&F enables more flexible and resilient network architectures that can maintain service even when individual links are unavailable.

Conclusion

Store and Forward represents a significant advancement in 5G-Advanced satellite communications, particularly for IoT applications. By decoupling the timing requirements between service link and feeder link communications, S&F enables more resilient, energy-efficient, and cost-effective deployment of IoT devices in remote or challenging environments.

As 3GPP Release 19 specifications continue to develop, we can expect to see this capability integrated into commercial satellite IoT offerings, expanding the reach of 5G networks to truly global coverage. While initially targeted at IoT applications, the architectural principles of S&F could eventually extend to other services, bringing us closer to ubiquitous connectivity across terrestrial and non-terrestrial networks.

Related Posts

Friday, 8 December 2023

6G Global - Videos & Presentations from Mobile Korea 2023

5G Forum, South Korea organises Mobile Korea conference every year. Mobile Korea 2023 had two conferences within it, '6G Global', looking at 'Beyond Connectivity and New Possibilities', and '5G Vertical Summit', looking at 'Leading to Sustainable Society with 5G'.

I often complain about how organisations working in 6G often lack social networks skills, in this case, even the website is not very user friendly and doesn't contain a lot of details. Full marks for uploading the videos on YouTube though.

Anyway, here are the videos and presentations that were shared from the summit:

  • Opening + Keynote Session - Moderator : LEE, HyeonWoo, DanKook University
    • Standardization and Technical Trend for 6G, SungHyun CHOI, Samsung Research (video, presentation)
  • Session 1 : 6G Global Trend - Moderator : JaeHoon CHUNG, LG Electronics Inc.
    • Thoughts on standardization and Industry priorities to ensure timely market readiness for 6G, Sari NIELSEN, Nokia (video, presentation)
    • On the convergence route for 6G, Wen TONG, Huawei (video, presentation)
    • The Path from 5G to 6G: Vision and Technology, Edward G. TIEDMANN, Qualcomm Technologies  (video, presentation)
    • Shaping 6G – Technology and Services, Bo HAGERMAN, Ericsson (video, presentation)
  • Government Session
    • Keynote : Korea's 6G R&D Promotion Strategy, KyeongRae CHO, Ministry of Science and ICT (video, presentation)
  • Session 2 : 6G Global Collaboration - Moderator : Juho LEE, Samsung Electronics
  • 6G R&D and promotion in Japan, Kotaro KUWAZU, B5GPC (video, presentation)
    • Technology evolution toward beyond 5G and 6G, Charlie ZHANG, Samsung Research (video, presentation)
    • AI-Native RAN and Air Interface : Promises and Challenges, Balaji Raghothaman, Keysight (video, presentation)
    • Enabling 6G Research through Rapid Prototyping and Test LEE, SeYong, (NI) (video, presentation)
    • Global Collaborative R&D Activities for Advanced Radio Technologies, JaeHoon CHUNG, LG Electronics (video, presentation)
    • International research collaboration – key to a sustainable 6G road, Thomas HAUSTEIN, Fraunhofer Heinrich Hertz Institute (video, presentation)
    • 6G as Cellular Network 2.0: A Networked Computing Perspective, KyungHan LEE, Seoul National University (video, presentation)
    • Towards a Sustainable 6G, Marcos KATZ, University of Oulu (video, presentation)
  • Pannel Discussion : Roles of Public Domain in 6G R&D - Moderator : HyeonWoo LEE, DanKook University
  • Session 3 : 6G Global Mega Project - Moderator: YoungJo KO, ETRI
    • Sub-THz band wireless transmission and access technology for 6G Tbps data rate, JuYong LEE, KAIST (video, presentation)
    • The post Shannon Era: Towards Semantic, Goal-Oriented and Reconfigurable Intelligent Environments aided 6G communications, Emilio CALVANESE STRINATI, CEA Leti (video, presentation)
    • Demonstration of 1.4 Tbits wireless transmission using OAM multiplexing technology in the sub-THz band, DooHwan LEE, NTT Corporation (video, presentation)
    • Latest 6G research progress in China, Zhiqin WANG, CAICT (video, presentation)

If there are no links in video/presentation than it hasn't been shared.

Related Posts

Saturday, 24 December 2022

3GPP Release 17 Description and Summary of Work Items

An updated (looks final) version of 3GPP TR 21.917: Release 17 Description; Summary of Rel-17 Work Items was added to the archive earlier this month. It is a fantastic summary of all the Rel-17 features. Quoting the executive summary from the specs:

Release 17 is dedicated to consolidate and enhance the concepts and functionalities introduced in the previous Releases, while introducing a small number of brand new Features.

The improvements relate to all the key areas of the previous Releases: services to the industry (the "verticals"), including positioning, private network, etc.; improvements for several aspects of 5G supporting Internet of Things (IoT), both in the Core Network and in the Access Network, of proximity (direct) communications between mobiles, in particular in the context of autonomous driving (V2X), in several media aspects of the user plane related to the entertainment industry (codec, streaming, broadcasting) and also of the support of Mission Critical communications. Furthermore, a number of network functionalities have been improved, e.g. for slicing, traffic steering and Edge-computing.

The Radio interface and the Access Network have been significantly improved too (MIMO, Repeaters, 1024QAM modulation for downlink, etc.). While most of the improvements target 5G/NR radio access (or are access-agnostic), some improvements are dedicated to 4G/LTE access. Such improvements are clearly identified in the title and in the chapters where they appear.

Note: To avoid terminology such as "even further improvements of…", the successive enhancements are now referred to as "Phase n": "phase 2" refers to the first series of enhancements, "Phase 3" to the enhancements of the enhancements, etc. In this transition Release, the "Phase n" way of referring to successive enhancements has not always been used consistently nor enforced.

As for the new Features, the main new Feature of this Release is the support of satellite access, and a dedicated chapter covers this topic.

Note that the classifications, groupings and order of appearance of the Features in this document reflect a number of choices by the editor as there is no "3GPP endorsement" for classification/order. This Executive Summary has also been written by the editor and represents his view.

The following list is from the table of contents to provide you an idea and if it interests you, download the technical report here

5 Integration of satellite components in the 5G architecture
5.1 General traffic (non-IoT)
5.1.1 SA and CT aspects
5.1.2 RAN aspects
5.2 NB-IoT/eMTC support for Non-Terrestrial Networks

6 Services to "verticals"
6.1 Introduction
6.2 Generic functionalities, to all verticals
6.2.1 Network and application enablement for verticals
6.2.1.1 Enhanced Service Enabler Architecture Layer for Verticals
6.2.1.2 Enhancements for Cyber-physical control Applications in Vertical domains (eCAV)
6.2.1.3 Enhancements of 3GPP Northbound Interfaces and APIs
6.2.2 Location and positioning
6.2.2.1 RAN aspects of NR positioning enhancements
6.2.2.2 Enhancement to the 5GC LoCation Services-Phase 2
6.2.3 Support of Non-Public and Private Networks
6.2.3.1 Enhanced support of Non-Public Networks
6.2.3.2 Enhancement of Private Network support for NG-RAN
6.3 Specific verticals support
6.3.1 Railways
6.3.1.1 Enhancements to Application Architecture for the Mobile Communication System for Railways Phase 2
6.3.1.2 Enhanced NR support for high speed train scenario (NR_HST)
6.3.1.2.1 NR_HST for FR1
6.3.1.2.2 NR_HST for FR2
6.3.1.3 NR Frequency bands for Railways
6.3.1.3.1 Introduction of 900MHz NR band for Europe for Rail Mobile Radio (RMR)
6.3.1.3.2 Introduction of 1900MHz NR TDD band for Europe for Rail Mobile Radio (RMR)
6.3.2 Mission Critical (MC) and priority service
6.3.2.1 Mission Critical Push-to-talk Phase 3
6.3.2.2 Mission Critical Data Phase 3
6.3.2.3 Mission Critical security Phase 2
6.3.2.4 Mission Critical Services over 5GS
6.3.2.5 Enhanced Mission Critical Communication Interworking with Land Mobile Radio Systems (CT aspects)
6.3.2.6 Mission Critical system migration and interconnection (CT aspects)
6.2.3.7 MC services support on IOPS mode of operation
6.3.2.8 MCPTT in Railways
6.3.2.9 Multimedia Priority Service (MPS) Phase 2
6.3.3 Drone/UAS/UAV/EAV
6.3.3.1 Introduction
6.3.3.2 General aspects
6.3.3.2.1 5G Enhancement for UAVs
6.3.3.2.2 Application layer support for UAS
6.3.3.3 Remote Identification of UAS
6.3.4 Media production, professional video and Multicast-Broadcast
6.3.4.1 Communication for Critical Medical Applications
6.3.4.2 Audio-Visual Service Production
6.3.4.3 Multicast-Broadcast Services (MBS)
6.3.4.3.1 Multicast-broadcast services in 5G
6.3.4.3.2 NR multicast and broadcast services
6.3.4.3.3 5G multicast and broadcast services
6.3.4.3.4 Security Aspects of Enhancements for 5G MBS
6.3.4.4 Study on Multicast Architecture Enhancements for 5G Media Streaming
6.3.4.5 5G Multicast-Broadcast User Service Architecture and related 5GMS Extensions
6.3.4.6 Other media and broadcast aspects
6.4 Other "verticals" aspects

7 IoT, Industrial IoT, REDuced CAPacity UEs and URLLC
7.1 NR small data transmissions in INACTIVE state
7.2 Additional enhancements for NB-IoT and LTE-MTC
7.3 Enhanced Industrial IoT and URLLC support for NR
7.4 Support of Enhanced Industrial IoT (IIoT)
7.5 Support of reduced capability NR devices
7.6 IoT and 5G access via Satellite/Non-Terrestrial (NTN) link
7.7 Charging enhancement for URLLC and CIoT
7.8 Messaging in 5G

8 Proximity/D2D/Sidelink related and V2X
8.1 Enhanced Relays for Energy eFficiency and Extensive Coverage
8.2 Proximity-based Services in 5GS
8.3 Sidelink/Device-to-Device (D2D)
8.3.1 NR Sidelink enhancement
8.3.2 NR Sidelink Relay
8.4 Vehicle-to-Everything (V2X)
8.4.1 Support of advanced V2X services - Phase 2
8.4.2 Enhanced application layer support for V2X services

9 System optimisations
9.1 Edge computing
9.1.1 Enhancement of support for Edge Computing in 5G Core network
9.1.2 Enabling Edge Applications
9.1.3 Edge Computing Management
9.2 Slicing
9.2.1 Network Slicing Phase 2 (CN and AN aspects)
9.2.2 Network Slice charging based on 5G Data Connectivity
9.3 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 2
9.4 Self-Organizing (SON)/Autonomous Network
9.4.1 Enhancement of data collection for SON/MDT in NR and EN-DC
9.4.2 Autonomous network levels
9.4.3 Enhancements of Self-Organizing Networks (SON)
9.5 Minimization of service Interruption
9.6 Policy and Charging Control enhancement
9.7 Multi-(U)SIM
9.7.1 Support for Multi-USIM Devices (System and CN aspects)
9.7.2 Support for Multi-SIM Devices for LTE/NR

10 Energy efficiency, power saving
10.1 UE power saving enhancements for NR
10.2 Enhancements on EE for 5G networks
10.3 Other energy efficiency aspects

11 New Radio (NR) physical layer enhancements
11.1 Further enhancements on MIMO for NR
11.2 MIMO Over-the-Air requirements for NR UEs
11.3 Enhancements to Integrated Access and Backhaul for NR
11.4 NR coverage enhancements
11.5 RF requirements for NR Repeaters
11.6 Introduction of DL 1024QAM for NR FR1
11.7 NR Carrier Aggregation
11.7.1 NR intra band Carrier Aggregation
11.7.2 NR inter band Carrier Aggregation
11.8 NR Dynamic Spectrum Sharing
11.9 Increasing UE power high limit for CA and DC
11.10 RF requirements enhancement for NR FR1
11.11 RF requirements further enhancements for NR FR2
11.12 NR measurement gap enhancements
11.13 UE RF requirements for Transparent Tx Diversity for NR
11.14 NR RRM further enhancement
11.15 Further enhancement on NR demodulation performance
11.16 Bandwidth combination set 4 (BCS4) for NR
11.17 Other NR related activities
11.18 NR new/modified bands
11.18.1 Introduction of 6GHz NR licensed bands
11.18.2 Extending current NR operation to 71 GHz
11.18.3 Other NR new/modified bands

12. New Radio (NR) enhancements other than layer 1
12.1 NR Uplink Data Compression (UDC)
12.2 NR QoE management and optimizations for diverse services

13 NR and LTE enhancements
13.1 NR and LTE layer 1 enhancements
13.1.1 High-power UE operation for fixed-wireless/vehicle-mounted use cases in LTE bands and NR bands
13.1.2 UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
13.1.3 Other Dual Connectivity and Multi-RAT enhancements
13.2 NR and LTE enhancements other than layer 1
13.2.1 Enhanced eNB(s) architecture evolution for E-UTRAN and NG-RAN
13.2.2 Further Multi-RAT Dual-Connectivity enhancements
13.2.3 Further Multi-RAT Dual-Connectivity enhancements

14 LTE-only enhancements
14.1 LTE  inter-band Carrier Aggregation
14.2 LTE new/modified bands
14.2.1 New bands and bandwidth allocation for 5G terrestrial broadcast - part 1
14.3 Other LTE bands-related aspects

15 User plane improvements
15.1 Immersive Teleconferencing and Telepresence for Remote Terminals
15.2 8K Television over 5G
15.3 5G Video Codec Characteristics
15.4 Handsets Featuring Non-Traditional Earpieces
15.5 Extension for headset interface tests of UE
15.6 Media Streaming AF Event Exposure
15.7 Restoration of PDN Connections in PGW-C/SMF Set
15.8 Other media and user plane aspects

16 Standalone Security aspects
16.1 Introduction
16.2 Authentication and key management for applications based on 3GPP credential in 5G (AKMA)
16.3 AKMA TLS protocol profiles
16.4 User Plane Integrity Protection for LTE
16.5 Non-Seamless WLAN offload authentication in 5GS
16.6 Generic Bootstrapping Architecture (GBA) into 5GC
16.7 Security Assurance Specification for 5G
16.8 Adapting BEST for use in 5G networks
16.9 Other security aspects

17 Signalling optimisations
17.1 Enhancement for the 5G Control Plane Steering of Roaming for UE in Connected mode
17.2 Same PCF selection for AMF and SMF
17.3 Enhancement of Inter-PLMN Roaming
17.4 Enhancement on the GTP-U entity restart
17.5 Packet Flow Description management enhancement
17.6 PAP/CHAP protocols usage in 5GS
17.7 Start of Pause of Charging via User Plane
17.8 Enhancement of Handover Optimization
17.9 Restoration of Profiles related to UDR
17.10 IP address pool information from UDM
17.11 Dynamic management of group-based event monitoring
17.12 Dynamically Changing AM Policies in the 5GC
17.13 Other aspects

18 Standalone Management Features
18.1 Introduction
18.2 Enhanced Closed loop SLS Assurance
18.3 Enhancement of QoE Measurement Collection
18.4 Plug and connect support for management of Network Functions
18.5 Management of MDT enhancement in 5G
18.6 Management Aspects of 5G Network Sharing
18.7 Discovery of management services in 5G
18.8 Management of the enhanced tenant concept
18.9 Intent driven management service for mobile network
18.10 Improved support for NSA in the service-based management architecture
18.11 Additional Network Resource Model features
18.12  Charging for Local breakout roaming of data connectivity
18.13 File Management
18.14 Management data collection control and discovery
18.15 Other charging and management aspects

If you find them useful then please get the latest document from here.

Related Posts