Showing posts sorted by date for query fixed wireless access. Sort by relevance Show all posts
Showing posts sorted by date for query fixed wireless access. Sort by relevance Show all posts

Thursday, 19 December 2024

Evolution and Impact of Cellular Location Services (LCS)

Location Services (LCS) have been standardized by 3GPP across all major generations of cellular technology, including 2G (GSM), 3G (UMTS), 4G (LTE), and 5G. These services enable applications to determine the geographical location of mobile devices, facilitating crucial functions such as emergency calls, navigation, and location-based advertising. The consistent adoption of standardized protocols ensures interoperability, scalability, and reliability, empowering mobile operators and device manufacturers to implement location services in a globally consistent manner.

The evolution of LCS technology has seen remarkable advancements with each generation of cellular networks. Early implementations in 2G and 3G relied on basic techniques such as Cell-ID, Timing Advance, and triangulation, which offered limited accuracy and were suitable only for rudimentary use cases. 

The introduction of LTE in 3GPP Release 9 marked a significant improvement, integrating support for regulatory services like emergency call localization and commercial applications such as mapping. LTE networks commonly employ global navigation satellite systems (GNSS), like GPS, to determine locations. However, alternative methods using the LTE air interface are crucial in scenarios where GNSS signals are obstructed, such as indoors or in dense urban environments. An LTE network can support horizontal positioning accuracy of 50m for 80% of mobiles and a vertical positioning accuracy of 5m and an end-to-end latency of 30 seconds.


In 5G, the introduction of high-bandwidth, low-latency communication and new architectural enhancements allows for even more accurate and responsive location services. These improvements support critical use cases like autonomous vehicles, smart cities, and industrial IoT applications. 

5G networks have further improved LCS with high-bandwidth, low-latency communication and architectural enhancements. These innovations enable critical applications like autonomous vehicles, smart cities, and industrial IoT. In Release 15, 5G devices support legacy LTE location protocols through the Gateway Mobile Location Centre (GMLC). From Release 16, the Network Exposure Function (NEF) streamlines location requests for modern applications. A 5G network is expected to deliver a horizontal positioning accuracy of 3m indoors and 10m outdoors, a vertical positioning accuracy of 3m in both environments and an end-to-end latency of one second.

The standardization efforts of 3GPP have ensured that location services meet stringent requirements for accuracy, privacy, and security. Emergency services, for instance, benefit from these standards through Enhanced 911 (E911) in the United States and similar mandates globally, which require precise location reporting for mobile callers. Furthermore, standardization fosters innovation by providing a common foundation on which developers can create new location-based services and applications. As cellular networks continue to evolve, 3GPP’s standardized LCS will remain a cornerstone in bridging connectivity with the physical world, enabling smarter, safer, and more connected societies.

Mpirical recently shared a video exploring the concepts and drivers of Location Services (LCS). It's embedded below:

If you want to learn more about LCS, check out Mpirical's training course on this topic which seeks to provide an end to end exploration of the techniques and technologies involved, including the driving factors, standardization, requirements, architectural elements, protocols and protocol stacks, 2G-5G LCS operation and location finding techniques (overview and specific examples).

Mpirical is a leading provider of telecoms training, specializing in mobile and wireless technologies such as 5G, LTE, and IoT. They boast a course catalogue of wide ranging topics and technologies for all levels, with each course thoughtfully broken down into intuitive learning modules. 

Related Posts

Thursday, 24 October 2024

4G/LTE, 5G and Private Networks in Africa

The Global mobile Suppliers Association (GSA) recently released its "Regional Spotlight Africa – October 2024" report. It tracks 604 public mobile networks across North and Sub-Saharan Africa, including LTE, LTE-Advanced, 5G, and fixed wireless access networks. The report gives an up-to-date view of 4G and 5G deployment in Africa, using the latest data and insights from GSA's various reports on mobile networks and satellite services.

Africa has seen major progress in telecommunications in recent years. The expansion of 4G LTE networks has improved data speeds, enhanced connectivity, and supported the spread of mobile broadband services. Looking ahead, 5G technology promises even faster speeds, lower latency, and stronger security, opening the door to new possibilities in connectivity.

The report covers key areas of mobile network development, such as:

  • The current state of LTE and 5G rollouts
  • LTE-Advanced advancements
  • 5G standalone networks
  • The growth of private networks
  • Phasing out 2G and 3G technologies
  • Progress in satellite services

Alongside the report, GSA hosted a regional webinar where the research team shared insights on:

  • The status of LTE and LTE-Advanced in Africa and how it compares globally
  • Whether 5G development is being delayed by ongoing LTE rollouts and older devices
  • Recent spectrum auctions and assignments
  • The transition from 2G and 3G networks
  • The potential for satellite non-terrestrial (NTN) services in Africa and how operators are responding

The webinar video is available below.

Related Posts: 

Tuesday, 10 September 2024

GSA's Updates on Fixed Wireless Access (FWA) Numbers

In the GSA 4G/5G FWA Forum Plenary back in June, GSA identified announced service offers using LTE or 5G from 554 operators in 187 countries and territories, and launched services from 477 operators in 175 markets worldwide, as of late 2023. However, digging into these global numbers and the regional picture of operators delivering FWA services using LTE or 5G varies widely.

The GSA 4G-5G FWA Forum Plenary brought together operators from the MEA and APAC regions to identify and share their best practice fixed wireless access use cases. The webinar is embedded below:

The FWA Market June 2024 report is available here to download.

Related Posts

Saturday, 30 December 2023

Top 10 Blog Posts and Top 5 Videos for 2023

The 3G4G Blog is our most popular blog, running for over 16 years with over 15.5 million views. With 2023 coming to an end, here are the top 10 most viewed posts from 2023 as well as top 5 most viewed videos. These posts/videos were not necessarily posted this year, so I have added the month and year each of them was posted.

  1. Network Slicing using User Equipment Route Selection Policy (URSP), Nov. 2021
  2. NWDAF in 3GPP Release-16 and Release-17, Feb. 2021
  3. New 5G NTN Spectrum Bands in FR1 and FR2, May 2023
  4. Non-public networks (NPN) - Private Networks by another name, May 2019
  5. How many Cell Sites and Base Stations Worldwide?, Mar. 2023
  6. What is RF Front-End (RFFE) and why is it so Important?, Jan. 2022
  7. 3GPP Release 17 Description and Summary of Work Items, Dec. 2022
  8. Two Types of SMS in 5G, Sep. 2020
  9. ATIS Webinar on "3GPP Release 18 Overview: A World of 5G-Advanced", Feb. 2023
  10. Prof. Ted Rappaport Keynote at EuCNC & 6G Summit 2023 on 'Looking Towards the 6G Era - What we may expect, and why', Aug. 2023

Here are top 5 videos viewed on our YouTube channel in the last year:

  1. Beginners: What is Industrial IoT (IIoT), Feb.2019
  2. Beginners: Radio Frequency, Band and Spectrum, July 2017
  3. Beginners: Different Types of RAN Architectures - Distributed, Centralized & Cloud, July 2021
  4. Beginners: Fixed Wireless Access (FWA), Sep. 2018
  5. Beginners: MNO, MVNO, MVNA, MVNE: Different types of mobile operators, Apr. 2018

Let us know about your favourite post and/or video in the comments below.

Related Posts

Wednesday, 31 May 2023

New 5G NTN Spectrum Bands in FR1 and FR2

Release-17 includes two new FR1 bands for NTN; n255 (a.k.a. NTN 1.6GHz) and n256 (a.k.a. NTN 2GHz). The picture is from a slide in Rohde & Schwarz presentation available here. Quoting from an article by Reiner Stuhlfauth, Technology Manager Wireless, Rohde & Schwarz:

Currently, several frequency ranges are being discussed within 3GPP for NTN. Some are in the FR1 legacy spectrum, and some beyond 10 GHz and FR2. The current FR1 bands discussed for NTN are:

  • The S-band frequencies from 1980 to 2010 MHz in uplink (UL) direction and from 2170 to 2200 MHz in downlink (DL) direction (Band n256).
  • The L-band frequencies from 1525 to 1559 MHz DL together with 1626.5 to 1660.5 MHz for the UL (Band n255).1

These frequency ranges have lower path attenuation, and they’re already used in legacy communications. Thus, components are available now, but the bands are very crowded, and the usable bandwidth is restricted. Current maximum bandwidth is 20 MHz with up to 40-MHz overall bandwidth envisaged in the future [TR 38.811].

As far as long-term NTN spectrum use is concerned, 3GPP is discussing NR-NTN above 10 GHz. The Ka-band is the highest-priority band with uplinks between 17.7 and 20.2 GHz and downlinks between 27.5 and 30 GHz, based on ITU information regarding satellite communications frequency use.2 Among current FR2 challenges, one is that some of the discussed bands fall into the spectrum gap between FR1 and FR2 and that NTN frequencies will use FDD duplex mode due to the long roundtrip time.

Worth highlighting again that the bands above, including n510, n511 and n512 are all FDD bands due to the long round trip times.

The latest issue of 3GPP highlight magazine has an article on NTN as well. Quoting from the article:

The NTN standard completed as part of 3GPP Release 17 defines key enhancements to support satellite networks for two types of radio protocols/interfaces:

  • 5G NR radio interface family also known as NR-NTN
  • 4G NB-IoT & eMTC radio interfaces family known as IoT-NTN

These critical enhancements including adaptation for satellite latency and doppler effects have been carefully defined to support a wide range of satellite network deployment scenarios and orbits (i.e., LEO, MEO and GEO), terminal types (handheld, IoT, vehicle mounted), frequency bands, beam types (Earth fixed/Earth moving) and sizes. The NTN standard also addresses mobility procedures across both terrestrial and non-terrestrial network components. Release 17 further includes Radio Frequency and Radio Resource Management specifications for terminals and satellite access nodes operating in two FR1 frequency ranges allocated to Mobile Satellite Services (i.e., n255 and n256).

You can read it here.

Related Posts

Saturday, 24 December 2022

3GPP Release 17 Description and Summary of Work Items

An updated (looks final) version of 3GPP TR 21.917: Release 17 Description; Summary of Rel-17 Work Items was added to the archive earlier this month. It is a fantastic summary of all the Rel-17 features. Quoting the executive summary from the specs:

Release 17 is dedicated to consolidate and enhance the concepts and functionalities introduced in the previous Releases, while introducing a small number of brand new Features.

The improvements relate to all the key areas of the previous Releases: services to the industry (the "verticals"), including positioning, private network, etc.; improvements for several aspects of 5G supporting Internet of Things (IoT), both in the Core Network and in the Access Network, of proximity (direct) communications between mobiles, in particular in the context of autonomous driving (V2X), in several media aspects of the user plane related to the entertainment industry (codec, streaming, broadcasting) and also of the support of Mission Critical communications. Furthermore, a number of network functionalities have been improved, e.g. for slicing, traffic steering and Edge-computing.

The Radio interface and the Access Network have been significantly improved too (MIMO, Repeaters, 1024QAM modulation for downlink, etc.). While most of the improvements target 5G/NR radio access (or are access-agnostic), some improvements are dedicated to 4G/LTE access. Such improvements are clearly identified in the title and in the chapters where they appear.

Note: To avoid terminology such as "even further improvements of…", the successive enhancements are now referred to as "Phase n": "phase 2" refers to the first series of enhancements, "Phase 3" to the enhancements of the enhancements, etc. In this transition Release, the "Phase n" way of referring to successive enhancements has not always been used consistently nor enforced.

As for the new Features, the main new Feature of this Release is the support of satellite access, and a dedicated chapter covers this topic.

Note that the classifications, groupings and order of appearance of the Features in this document reflect a number of choices by the editor as there is no "3GPP endorsement" for classification/order. This Executive Summary has also been written by the editor and represents his view.

The following list is from the table of contents to provide you an idea and if it interests you, download the technical report here

5 Integration of satellite components in the 5G architecture
5.1 General traffic (non-IoT)
5.1.1 SA and CT aspects
5.1.2 RAN aspects
5.2 NB-IoT/eMTC support for Non-Terrestrial Networks

6 Services to "verticals"
6.1 Introduction
6.2 Generic functionalities, to all verticals
6.2.1 Network and application enablement for verticals
6.2.1.1 Enhanced Service Enabler Architecture Layer for Verticals
6.2.1.2 Enhancements for Cyber-physical control Applications in Vertical domains (eCAV)
6.2.1.3 Enhancements of 3GPP Northbound Interfaces and APIs
6.2.2 Location and positioning
6.2.2.1 RAN aspects of NR positioning enhancements
6.2.2.2 Enhancement to the 5GC LoCation Services-Phase 2
6.2.3 Support of Non-Public and Private Networks
6.2.3.1 Enhanced support of Non-Public Networks
6.2.3.2 Enhancement of Private Network support for NG-RAN
6.3 Specific verticals support
6.3.1 Railways
6.3.1.1 Enhancements to Application Architecture for the Mobile Communication System for Railways Phase 2
6.3.1.2 Enhanced NR support for high speed train scenario (NR_HST)
6.3.1.2.1 NR_HST for FR1
6.3.1.2.2 NR_HST for FR2
6.3.1.3 NR Frequency bands for Railways
6.3.1.3.1 Introduction of 900MHz NR band for Europe for Rail Mobile Radio (RMR)
6.3.1.3.2 Introduction of 1900MHz NR TDD band for Europe for Rail Mobile Radio (RMR)
6.3.2 Mission Critical (MC) and priority service
6.3.2.1 Mission Critical Push-to-talk Phase 3
6.3.2.2 Mission Critical Data Phase 3
6.3.2.3 Mission Critical security Phase 2
6.3.2.4 Mission Critical Services over 5GS
6.3.2.5 Enhanced Mission Critical Communication Interworking with Land Mobile Radio Systems (CT aspects)
6.3.2.6 Mission Critical system migration and interconnection (CT aspects)
6.2.3.7 MC services support on IOPS mode of operation
6.3.2.8 MCPTT in Railways
6.3.2.9 Multimedia Priority Service (MPS) Phase 2
6.3.3 Drone/UAS/UAV/EAV
6.3.3.1 Introduction
6.3.3.2 General aspects
6.3.3.2.1 5G Enhancement for UAVs
6.3.3.2.2 Application layer support for UAS
6.3.3.3 Remote Identification of UAS
6.3.4 Media production, professional video and Multicast-Broadcast
6.3.4.1 Communication for Critical Medical Applications
6.3.4.2 Audio-Visual Service Production
6.3.4.3 Multicast-Broadcast Services (MBS)
6.3.4.3.1 Multicast-broadcast services in 5G
6.3.4.3.2 NR multicast and broadcast services
6.3.4.3.3 5G multicast and broadcast services
6.3.4.3.4 Security Aspects of Enhancements for 5G MBS
6.3.4.4 Study on Multicast Architecture Enhancements for 5G Media Streaming
6.3.4.5 5G Multicast-Broadcast User Service Architecture and related 5GMS Extensions
6.3.4.6 Other media and broadcast aspects
6.4 Other "verticals" aspects

7 IoT, Industrial IoT, REDuced CAPacity UEs and URLLC
7.1 NR small data transmissions in INACTIVE state
7.2 Additional enhancements for NB-IoT and LTE-MTC
7.3 Enhanced Industrial IoT and URLLC support for NR
7.4 Support of Enhanced Industrial IoT (IIoT)
7.5 Support of reduced capability NR devices
7.6 IoT and 5G access via Satellite/Non-Terrestrial (NTN) link
7.7 Charging enhancement for URLLC and CIoT
7.8 Messaging in 5G

8 Proximity/D2D/Sidelink related and V2X
8.1 Enhanced Relays for Energy eFficiency and Extensive Coverage
8.2 Proximity-based Services in 5GS
8.3 Sidelink/Device-to-Device (D2D)
8.3.1 NR Sidelink enhancement
8.3.2 NR Sidelink Relay
8.4 Vehicle-to-Everything (V2X)
8.4.1 Support of advanced V2X services - Phase 2
8.4.2 Enhanced application layer support for V2X services

9 System optimisations
9.1 Edge computing
9.1.1 Enhancement of support for Edge Computing in 5G Core network
9.1.2 Enabling Edge Applications
9.1.3 Edge Computing Management
9.2 Slicing
9.2.1 Network Slicing Phase 2 (CN and AN aspects)
9.2.2 Network Slice charging based on 5G Data Connectivity
9.3 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 2
9.4 Self-Organizing (SON)/Autonomous Network
9.4.1 Enhancement of data collection for SON/MDT in NR and EN-DC
9.4.2 Autonomous network levels
9.4.3 Enhancements of Self-Organizing Networks (SON)
9.5 Minimization of service Interruption
9.6 Policy and Charging Control enhancement
9.7 Multi-(U)SIM
9.7.1 Support for Multi-USIM Devices (System and CN aspects)
9.7.2 Support for Multi-SIM Devices for LTE/NR

10 Energy efficiency, power saving
10.1 UE power saving enhancements for NR
10.2 Enhancements on EE for 5G networks
10.3 Other energy efficiency aspects

11 New Radio (NR) physical layer enhancements
11.1 Further enhancements on MIMO for NR
11.2 MIMO Over-the-Air requirements for NR UEs
11.3 Enhancements to Integrated Access and Backhaul for NR
11.4 NR coverage enhancements
11.5 RF requirements for NR Repeaters
11.6 Introduction of DL 1024QAM for NR FR1
11.7 NR Carrier Aggregation
11.7.1 NR intra band Carrier Aggregation
11.7.2 NR inter band Carrier Aggregation
11.8 NR Dynamic Spectrum Sharing
11.9 Increasing UE power high limit for CA and DC
11.10 RF requirements enhancement for NR FR1
11.11 RF requirements further enhancements for NR FR2
11.12 NR measurement gap enhancements
11.13 UE RF requirements for Transparent Tx Diversity for NR
11.14 NR RRM further enhancement
11.15 Further enhancement on NR demodulation performance
11.16 Bandwidth combination set 4 (BCS4) for NR
11.17 Other NR related activities
11.18 NR new/modified bands
11.18.1 Introduction of 6GHz NR licensed bands
11.18.2 Extending current NR operation to 71 GHz
11.18.3 Other NR new/modified bands

12. New Radio (NR) enhancements other than layer 1
12.1 NR Uplink Data Compression (UDC)
12.2 NR QoE management and optimizations for diverse services

13 NR and LTE enhancements
13.1 NR and LTE layer 1 enhancements
13.1.1 High-power UE operation for fixed-wireless/vehicle-mounted use cases in LTE bands and NR bands
13.1.2 UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
13.1.3 Other Dual Connectivity and Multi-RAT enhancements
13.2 NR and LTE enhancements other than layer 1
13.2.1 Enhanced eNB(s) architecture evolution for E-UTRAN and NG-RAN
13.2.2 Further Multi-RAT Dual-Connectivity enhancements
13.2.3 Further Multi-RAT Dual-Connectivity enhancements

14 LTE-only enhancements
14.1 LTE  inter-band Carrier Aggregation
14.2 LTE new/modified bands
14.2.1 New bands and bandwidth allocation for 5G terrestrial broadcast - part 1
14.3 Other LTE bands-related aspects

15 User plane improvements
15.1 Immersive Teleconferencing and Telepresence for Remote Terminals
15.2 8K Television over 5G
15.3 5G Video Codec Characteristics
15.4 Handsets Featuring Non-Traditional Earpieces
15.5 Extension for headset interface tests of UE
15.6 Media Streaming AF Event Exposure
15.7 Restoration of PDN Connections in PGW-C/SMF Set
15.8 Other media and user plane aspects

16 Standalone Security aspects
16.1 Introduction
16.2 Authentication and key management for applications based on 3GPP credential in 5G (AKMA)
16.3 AKMA TLS protocol profiles
16.4 User Plane Integrity Protection for LTE
16.5 Non-Seamless WLAN offload authentication in 5GS
16.6 Generic Bootstrapping Architecture (GBA) into 5GC
16.7 Security Assurance Specification for 5G
16.8 Adapting BEST for use in 5G networks
16.9 Other security aspects

17 Signalling optimisations
17.1 Enhancement for the 5G Control Plane Steering of Roaming for UE in Connected mode
17.2 Same PCF selection for AMF and SMF
17.3 Enhancement of Inter-PLMN Roaming
17.4 Enhancement on the GTP-U entity restart
17.5 Packet Flow Description management enhancement
17.6 PAP/CHAP protocols usage in 5GS
17.7 Start of Pause of Charging via User Plane
17.8 Enhancement of Handover Optimization
17.9 Restoration of Profiles related to UDR
17.10 IP address pool information from UDM
17.11 Dynamic management of group-based event monitoring
17.12 Dynamically Changing AM Policies in the 5GC
17.13 Other aspects

18 Standalone Management Features
18.1 Introduction
18.2 Enhanced Closed loop SLS Assurance
18.3 Enhancement of QoE Measurement Collection
18.4 Plug and connect support for management of Network Functions
18.5 Management of MDT enhancement in 5G
18.6 Management Aspects of 5G Network Sharing
18.7 Discovery of management services in 5G
18.8 Management of the enhanced tenant concept
18.9 Intent driven management service for mobile network
18.10 Improved support for NSA in the service-based management architecture
18.11 Additional Network Resource Model features
18.12  Charging for Local breakout roaming of data connectivity
18.13 File Management
18.14 Management data collection control and discovery
18.15 Other charging and management aspects

If you find them useful then please get the latest document from here.

Related Posts

Tuesday, 30 November 2021

Will Wi-Fi Help 3GPP Bring Reliable Connectivity Indoors?

I have argued a few times now that it would make much more sense to be able to make access and core independent of each other. 3GPP 5G Standards already have a feature available from Release-16 onwards that enables this with 5G Core, Standalone networks.

We use our smart devices currently for voice and data communications. When we are indoor, many times the data goes over Wi-Fi. This is what tempted operators to move to WiFi for voice solution as well. Many operators are now enabling Voice of WiFi in their network to provide reliable voice coverage indoors.

While this works currently without any issues, when operators start offering new native services and applications, like XR over 5G, the current approach won't help. When our devices are connected over Wi-Fi at present, they are unable to take advantage of operator core or services. With access and core independence, this will no longer be an issue.

I gave a short (15 mins) virtual presentation at 5G Techritory this year. I argued not just for WWC but also looked at what 5G features have a potential for revolution. It's embedded below.

Related Posts:

Thursday, 13 May 2021

Anomaly Detection and other AI Algorithms in RAN Optimization


Yesterday I watched this very inspiring live chat that I would like to recommend to anyone who is interested in how machine learning techniques (aka "AI") can help to optimize and troubleshoot the Radio Access Network.

 [The real contents of in the video starts at approx. 42:00 min] 

My key takeaways from this fireside chat are: 

Verizon Wireless has enough data (100… 500 time series KPIs per cell) that they use to feed anomaly detection ML algorithms and this generates a huge number of alarms, but only a few actionable outputs. 

The “big elephant” (Nick Feamster) is to identify if these alarms indicating real problems that can and have to be fixed or if they just indicate a new behavior of e.g. a new handset or a SW version that was not present in the training phase of the ML algorithm and hence, its pattern is detected as a new “anomaly”. 

For Bryan Larish (Director Wireless AI Innovation, Verizon) the “big open problem” is “that it is not clear what the labels are” and “no standard training sets exist”. 

[For more details watch the video section between 52.00 min and 57:32 min and listen to Bryan’s experience!] 

In most cases Verizon seems to need subject matter experts to classify and label these anomaly alarms due to “the huge diversity” in data pattern. 

According to Bryan only for very few selected use cases it is possible to build an automated loop to fix the issue. Especially the root causes of radio interference are often mechanical or cabling issues that need manual work to get fixed. 

All in all it is my personal impression at the end of the session that anomaly detection is currently a bit overhyped and that the real challenges and problems to be resolved start after anomalies are detected.

Nevertheless, as Bryan summarizes: “ML is a very, very powerful tool.” 

However, strategically he seems not to see a lot of value in anomaly detection by itself, but rather: “Can we use machine learning (results) to change how we build networks in the future?”


Thursday, 4 March 2021

The Fifth Generation Fixed Network (F5G)


Back in Feb 2020, ETSI announced the launch of a new group dedicated to specifying the fifth generation of Fixed Network (ETSI ISG F5G). The press release said:

We are entering an exciting new era of communications, and fixed networks play an essential role in that evolution alongside and in cooperation with mobile networks. Building on previous generations of fixed networks, the 5th generation will address three main use cases, a full-fiber connection, enhanced fixed broadband and a guaranteed reliable experience.

For home scenarios, emerging services such as Cloud VR (virtual reality) and AR (augmented reality) video streaming or online gaming introduce the necessity for ultra-broadband, extremely low latency and zero packet loss. Business scenarios such as enterprise Cloudification, leased line, or POL (Passive Optical LAN) require high reliability and high security. Other industry sectors have specific requirements on the deployment of fiber infrastructures including environmental conditions such as humidity, temperature or electromagnetic interference.

The ETSI ISG F5G aims at studying the fixed-network evolution required to match and further enhance the benefits that 5G has brought to mobile networks and communications. It will define improvements with respect to previous solutions and the new characteristics of the fifth-generation fixed network. This opens up new opportunities by comprehensively applying fiber technology to various scenarios, turning the Fiber to the Home paradigm into Fiber to Everything Everywhere.

ISG F5G considers a wide range of technologies, and therefore seeks to actively cooperate with a number of relevant standardization groups as well as vertical industrial organizations. ISG F5G will address aspects relating to new ODN technologies (Optical Distribution Network), XG(S)-PON and Wi-Fi 6 enhancements, control plane and user plane separation, smart energy efficiency, end-to-end full-stack slicing, autonomous operation and management, synergy of Transport and Access Networks, and adaptation of the Transport Network, amongst others.

The five work items approved last week deal with:

  • F5G use cases: the use cases include services to consumers and enterprises and will be selected based on their impact in terms of new technical requirements identified.
  • Landscape of F5G technology and standards: this work will study technology requirements for F5G use cases, explore existing technologies, and perform the gap analysis.
  • Definition of fixed network generations: to evaluate the driving forces and the path of fixed network evolution, including transport, access and on-premises networks. It will also identify the principal characteristics demarcating different generations and define them.
  • Architecture of F5G: this will specify the end-to-end network architectures, features and related network devices/elements’ requirements for F5G, including on-premises, Access, IP and Transport Networks.
  • F5G quality of experience: to specify the end-to-end quality of experience (QoE) factors for new broadband services. It will analyze the general factors that impact service performance and identify the relevant QoE dimensions for each service.

Then in May, at Huawei Global Analyst Summit 2020 (#HAS2020), Huawei invited global optical industry leaders to discuss F5G Industry development and ecosystem construction, and launched the F5G global industry joint initiative to draw up a grand blueprint for the F5G era. The press conference video is as follows:

Then in September 2020, ETSI released a whitepaper, "The Fifth Generation Fixed Network: Bringing Fibre to Everywhere and Everything"

Now there are couple of standards available that provides more insights.

ETSI GR F5G 001 - Fifth Generation Fixed Network (F5G); F5G Generation Definition Release #1:

In the past, the lack of a clear fixed network generation definition has prevented a wider technology standards adoption and prevented the creation and use of global mass markets. The success of the mobile and cable networks deployments, supported by clear specifications related to particular technological generations, has shown how important this generation definition is.

The focus of the 5th generation fixed networks (F5G) specifications is on telecommunication networks which consist fully of optical fibre elements up to the connection serving locations (user, home, office, base station, etc.). That being said, the connection to some terminals can still be assisted with wireless technologies (for instance, Wi-Fi®).

The main assumption behind the present document foresees that, in the near future, all the fixed networks will adopt end-to-end fibre architectures: Fibre to Everywhere.

The present document addresses the history of fixed networks and summarizes their development paths and driving forces. The factors that influence the definition of fixed, cable and mobile network generations will be analysed. Based upon this, the business and technology characteristics of F5G will be considered.

This table comparing the different generations of fixed networks is interesting too


ETSI GR F5G 002 - Fifth Generation Fixed Network (F5G); F5G Use Cases Release #1:

The present document describes a first set of use cases to be enabled by the Fifth Generation Fixed Network (F5G). These use cases include services to consumers and enterprises as well as functionalities to optimize the management of the Fifth Generation Fixed Network. The use cases will be used as input to a gap analysis and a technology landscape study, aiming to extract technical requirements needed for their implementations. Fourteen use cases are selected based on their impact. The context and description of each use case are presented in the present document.


The use cases as described in the present document are driving the three dimensions of characteristics that are specified in the document on generation definitions [i.1], namely eFBB (enhanced Fixed BroadBand), FFC (Full-Fibre Connection), and GRE (Guaranteed Reliable Experience). Figure 2 shows that:

  • depending on the use case, one or more dimensions are particularly important, and
  • all dimensions of the F5G system architecture are needed to implement the use cases.

I will surely be adding more stuff as and when it is available.

Related Posts:

Monday, 30 November 2020

Three New Standards to Accelerate 5G Wireless Wireline Convergence (WWC)

It's been just over a year since I wrote a detailed post on what I called '5G and Fixed-Mobile Convergence (FMC)'. The technical term being used in the industry for this feature is Wireless Wireline Convergence (WWC). 

Broadband Forum, the communications industry’s leading open standards development organization focused on accelerating broadband innovation, standards, and ecosystem development has just announced the publication of three new standards to accelerate global 5G adoption. The press release said:

Building on the Forum’s mission to drive a future consolidated approach to 5G, the standards will reduce development time, as well as capex and opex, from the traditional disparate fixed broadband and 5G networks. Ultimately, they will deliver a common and managed broadband experience to the end-user whatever the final connectivity technology.

There are three major sets of technical specifications that have been finalized, including 5G Wireless Wireline Convergence Architecture (TR-470), Access Gateway Function (AGF) Functional Requirements (TR-456) and Device Data Model (TR-181). Together, these documents provide functions and interfaces for Fixed Mobile Convergence (FMC), the AGF, and customer premises equipment (CPE) such as 5G-enabled routers.

TR-470 – produced in conjunction with 3GPP – describes the 5G FMC architecture, providing a high-level guide for network architects and planners and enabling fixed and mobile functions to coexist over a shared infrastructure. This will facilitate multi-access connectivity and give consumers a seamless, access-independent service experience.


For operators, the network functions required to operate their infrastructure will be streamlined and common technology, on-boarding, training, services and subscriber management between fixed and mobile divisions can be achieved. Furthermore, additional revenue streams will be created, with FMC extending the geographical reach of 5G core networks and the service offering of fixed networks.

TR-456 describes the functional requirements of the AGF. The AGF resides between fixed access networks and the 5G core network to support 5G and wireline Residential Gateways, creating a truly converged deployment. Alongside this, Broadband Forum’s Device: 2 data model (TR-181 Issue 2 Amendment 14), which is used by User Services Platform (USP), has been extended to address 5G Residential Gateways. The Device: 2 data model applies to all types of TR-069 or USP-enabled devices, including end devices, Residential Gateways, and other network infrastructure devices

In addition, the Functional Requirements for Broadband Residential Gateway Devices (TR-124) specification is expected to be finalized in Q4 2020. Moving from the network into the home, TR-124 has been extended to add requirements related to the 5G Residential Gateway extending the 5G control plane to the premises to open up new service opportunities with real time fulfillment.

In the video below, David Allan, Work Area Director for Wireless-Wireline Convergence at Broadband Forum and Christele Bouchat, Innovation Group Director at Broadband Forum discuss what is coming up in the next phase of 5G work and what opportunities this has opened up for the industry

WWC has a great potential to allow wireline and trusted/untrusted Wi-Fi to work with 5G so I am hopeful that operators will adopt this sooner, rather than later.

Follow the links below to learn more about this feature.

Related Posts:

Thursday, 10 September 2020

Interfacing HSS and UDM in 5GS with UDICOM (a.k.a NU1 / Nhss)

Back in 2012, we were talking about migration from HLR to HSS. Now we are discussing how to interface HSS to the UDM (Unified Data Management in 5G Core).


In the recent 5G World event, Richard Band, Head of 5G Core, HPE talked about 4G to 5G transition planning. During the talk he mentioned about UDICOM, which is the Standardised new interface between HSS and UDM as defined in 3GPP TS 23.632.


UDICOM allows operators to deploy separate HSS and UDM, even from different vendors. Supported features include:
  • Authentication
  • Single Registration Handover
  • IMS
  • SMS over NAS
3GPP TS 23.632 (Technical Specification Group Core Network and Terminals; User data interworking, coexistence and migration; Stage 2; Release 16) does not use the term UDICOM. It does however describe the interface details, system architecture, system procedures and network function service procedures of UDM-HSS interface.

As can be seen in the picture above, the following reference points are realized by service-based interfaces:
NU1: Reference point between the HSS and the UDM.
NU2: Reference point between the HSS and the 5GS-UDR.

The following Service based interfaces are defined for direct UDM-HSS interworking:
Nudm: Service-based interface exhibited by UDM.
Nhss: Service-based interface exhibited by HSS.

I am not going in more details here but anyone wanting to learn more about the interface should start with 3GPP TS 23.632.

Finally, this talk from HP Enterprise below provides more details of UDICOM.



Related Posts:

Saturday, 4 April 2020

5G eXtended Reality (5G-XR) in 5G System (5GS)


We have been meaning to make a tutorial on augmented reality (AR), virtual reality (VR), mixed reality (MR) and extended reality (XR) for a while but we have only managed to do it. Embedded below is video and slides for the tutorial and also a playlist of different use cases on XR from around the world.

If you are not familiar with the 5G Service Based Architecture (SBA) and 5G Core (5GC), best to check this earlier tutorial before going further. A lot of comments are generally around Wi-Fi instead of 5G being used for indoors and we completely agree. 3GPP 5G architecture is designed to cater for any access in addition to 5G access. We have explained it here and here. This guest post also nicely explains Network Convergence of Mobile, Broadband and Wi-Fi.





XR use cases playlist



A lot of info on this topic is from Qualcomm, GSMA, 3GPP and 5G Americas whitepaper, all of them in the links in the slides.


Related Posts:

Sunday, 15 September 2019

Wednesday, 23 January 2019

AI and Analytics Based Network Designing & Planning

Recently I blogged about how Deutsche Telekom is using AI for variety of things. The most interesting being (from this blog point of view), fiber-optic roll-out. According to their press release (shortened for easy reading):

"The shortest route to the customer is not always the most economical. By using artificial intelligence in the planning phase we can speed up our fiber-optic roll-out. This enables us to offer our customers broadband lines faster and, above all, more efficiently," says Walter Goldenits, head of Technology at Telekom Deutschland. It is often more economical to lay a few extra feet of cable. That is what the new software-based technology evaluates using digitally-collected environmental data. Where would cobblestones have to be dug up and laid again? Where is there a risk of damaging tree roots?

The effort and thus costs involved in laying cable depend on the existing structure. First, civil engineers open the ground and lay the conduits and fiber-optic cables. Then they have to restore the surface to its previous condition. Of course, the process takes longer with large paving stones than with dirt roads.

"Such huge amounts of data are both a blessing and a curse," says Prof. Dr. Alexander Reiterer, who heads the project at the Fraunhofer IPM. "We need as many details as possible. At the same time, the whole endeavour is only efficient if you can avoid laboriously combing through the data to find the information you need. For the planning process to be efficient the evaluation of these enormous amounts of data must be automated." Fraunhofer IPM has developed software that automatically recognizes, localizes and classifies relevant objects in the measurement data.

The neural network used for this recognizes a total of approximately 30 different categories through deep learning algorithms. This includes trees, street lights, asphalt and cobblestones. Right down to the smallest detail: Do the pavements feature large pavement slabs or small cobblestones? Are the trees deciduous or coniferous? The trees' root structure also has a decisive impact on civil engineering decisions.

Once the data has been collected, a specially-trained artificial intelligence is used to make all vehicles and individuals unidentifiable. The automated preparation phase then follows in a number of stages. The existing infrastructure is assessed to determine the optimal route. A Deutsche Telekom planner then double-checks and approves it.


In the recent TIP Summit 2018, Facebook talked about ‘Building Better Networks with Analytics’ and showed off their analytics platform. Vincent Gonguet, Product Manager, Connectivity Analytics, Facebook talked about how Facebook is using a three-pronged approach of accelerating fiber deployment, expanding 4G coverage and planning 5G networks. The video from the summit as follows:

TIP Summit 2018 Day 1 Presentation - Building Better Networks with Analytics from Telecom Infra Project on Vimeo.

Some of the points highlighted in the video:
  • Educating people to connect requires three main focus areas, Access, Affordability and Awareness – One of the main focus areas of TIP is access. 
  • 4G coverage went from 20% to 80% of world population in the last 5 years. The coverage growth is plateauing because the last 20% is becoming more and more uneconomical to connect.
  • Demand is outpacing supply is many parts of the world (indicating that networks has to be designed for capacity, not just coverage)
  • 19% of 4G traffic can’t support high quality videos today at about 1.5 Mbps
  • Facebook has a nice aggregated map of percentage of Facebook traffic across the world that is experiencing very low speeds, less than 0.5 Mbps
  • Talk looks at three approaches in which Facebook works with TIP members to accelerate fiber deployment, expand 4G coverage and plan 5G networks.
  • A joint fiber deployment project with Airtel and BCS in Uganda was announced at MWC 2018
  • 700 km of fiber deployment was planned to serve over 3 million people (Uganda’s population is roughly 43 million)
  • The real challenge was not just collecting data about roads, infrastructure, etc. New cities would emerge over the period of months with tens of thousands of people 
  • In such situations it would be difficult for human planners to go through all the roads and select the most economical route. Also, different human planners do thing in different ways and hence there is no consistency. In addition, its very hard to iterate. 
  • To make deployments simpler and easier, it was decided to first provide coverage to people who need less km of fiber. The savings from finding optimal path for these people can go in connecting more people.
  • It is also important for the fiber networks to have redundancy but it’s difficult to do this at scale
  • An example and simulation of how fiber networks are created is available in the video  from 07:45 – 11:00.
  • Another example is that of prioritizing 4G deployments based on user experience, current network availability and presence of 4G capable devices in partnership with XL Axiata is available in the video from 11:00 – 14:13. Over 1000 sites were deployed and more than 2 million people experienced significant improvement in their speeds and the quality of videos. 
  • The final example is planning of 5G mmWave networks. This was done in partnership with Deutsche Telekom, trying to bring high speeds to 25,000 apartment homes in a sq. km in the center of Berlin. The goal was to achieve over 1Gbps connection using a mixture of fiber and wireless. The video looks at the simulation of Lidar data where the wireless infrastructure can be deployed. Relevant part is from 14:13 – 20:25.
Finally, you may remember my blog post on Automated 4G / 5G Hetnet Design by Keima. Some of the work they do overlaps with both examples above. I reached out to Iris Barcia to see if they have any comments on the two different approaches above. Below is her response:

“It is very encouraging that DT and Facebook are seeing the benefits of data and automation for design. I think that is the only way we’re going to be able to plan modern communication networks. We approach it from the RAN planning perspective: 8 years ago our clients could already reduce cost by automatically selecting locations with good RF performance and close to fibre nodes, alternatively locations close to existing fibre routes or from particular providers. Now the range of variables that we are capable of computing is vast and it includes aspects such as accessibility rules, available spectrum, regulations, etc. This could be easily extended to account for capability/cost of deploying fibre per type of road. 

But also, we believe in the benefit of a holistic business strategy, and over the years our algorithms have evolved to prioritise cost and consumers more precisely. For example, based on the deployment needs we can identify areas where it would be beneficial to deploy fibre: the study presented at CWTEC showed a 5G Fixed Wireless analysis per address, allowing fibre deployments to be prioritised for those addresses characterised by poor RF connectivity.”

There is no doubt in my mind that more and more of these kinds of tools that relies on Analytics and Artificial Intelligence (AI) will be required to design and plan the networks. By this I don’t just mean 5G and other future networks but also the existing 2G, 3G & 4G networks and Hetnets. We will have to wait and see what’s next.


Related Blog Posts: