Tuesday, 10 September 2024

GSA's Updates on Fixed Wireless Access (FWA) Numbers

In the GSA 4G/5G FWA Forum Plenary back in June, GSA identified announced service offers using LTE or 5G from 554 operators in 187 countries and territories, and launched services from 477 operators in 175 markets worldwide, as of late 2023. However, digging into these global numbers and the regional picture of operators delivering FWA services using LTE or 5G varies widely.

The GSA 4G-5G FWA Forum Plenary brought together operators from the MEA and APAC regions to identify and share their best practice fixed wireless access use cases. The webinar is embedded below:

The FWA Market June 2024 report is available here to download.

Related Posts

Wednesday, 28 August 2024

Explaining Telecoms

Over the years we have made a lot of tutorials explaining mobile wireless technology (list here). Here is another one that came up as part of a discussion where many experienced telecom engineers seemed to be struggling explaining what telecoms mean. Slides and video embedded below:

Slides:

Video:

You can download the pdf from here.

Related Posts

Wednesday, 14 August 2024

3GPP Release 18 Description and Summary of Work Items

The first official release of 3GPP TR 21.918: "Release 18 Description; Summary of Rel-18 Work Items" has been published. It's the first official version of 5G-Advanced. Quoting from the report: 

Release 18 specifies further improvements of the 5G-Avanced system. 

These improvements consist both in enhancements of concepts/Features introduced in the previous Releases and in the introduction of new topics.

Some of the key improvements are:

  • a further integration of the Satellite (NTN) access (introduced in Rel-17) in the 5G System (5GS), 
  • a more efficient support of Internet of Things (IoT), Machine-Type Communication (MTC), including by satellite coverage
  • and also several aspects of proximity communication and location (Sidelink, Proximity, Location and Positioning, better support of the industrial needs (Verticals, Industries, Factories, Northbound API), Multicast and Broadcast Services (MBS), Network Slicing or Uncrewed Aerial Vehicles (UAV).

As for the new topics, some of the key aspects are:

  • Energy Efficiency (EE)
  • Artificial Intelligence (AI)/Machine Learning (ML)
  • eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive communications

The following list is from the v1.0.0 table of contents to make it easier to find the list of topics. If it interests you, download the latest version technical report from the directory here.

5 Satellite / Non-Terrestrial Network (NTN)
5.1 General aspects
5.1.1 User plane: “5G system with satellite backhaul”
5.1.2 Discontinuous coverage: “Satellite access Phase 2”
5.1.3 Radio: "NR NTN enhancements"
5.1.4 Charging and Management aspects of Satelite
5.2 Specific aspects
5.2.1 IoT (Internet of Things) NTN enhancements
5.2.2 Guidelines for Extra-territorial 5G Systems
5.2.3 5G system with satellite access to Support Control and/or Video Surveillance
5.2.4 Introduction of the satellite L-/S-band for NR
5.2.5 Other band-related aspects of satellite

6 Internet of Things (IoT), Machine-Type Communication (MTC)
6.1 Personal IoT and Residential networks
6.2 Enhanced support of Reduced Capability (RedCap) NR devices
6.3 NR RedCap UE with long eDRX for RRC_INACTIVE State
6.4 Application layer support for Personal IoT Network
6.5 5G Timing Resiliency System
6.6 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
6.7 Adding new NR FDD bands for RedCap in Rel-18
6.8 Signal level Enhanced Network Selection
6.9 IoT NTN enhancements

7 Energy Efficiency (EE)
7.1 Enhancements of EE for 5G Phase 2
7.2 Network energy savings for NR
7.3 Smart Energy and Infrastructure

8 Uncrewed Aerial Vehicles (UAV), UAS, UAM
8.1 Architecture for UAV and UAM Phase 2
8.2 Architecture for UAS Applications, Phase 2
8.3 NR support for UAV
8.4 Enhanced LTE Support for UAV

9 Sidelink, Proximity, Location and Positioning
9.1 5GC LoCation Services - Phase 3
9.2 Expanded and improved NR positioning
9.3 NR sidelink evolution
9.4 NR sidelink relay enhancements
9.5 Proximity-based Services in 5GS Phase 2
9.6 Ranging-based Service and sidelink positioning
9.7 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
9.8 5G-enabled fused location service capability exposure

10 Verticals, Industries, Factories, Northbound API
10.1 Low Power High Accuracy Positioning for industrial IoT scenarios
10.2 Application enablement aspects for subscriber-aware northbound API access
10.3 Smart Energy and Infrastructure
10.4 Generic group management, exposure and communication enhancements
10.5 Service Enabler Architecture Layer for Verticals Phase 3
10.6 SEAL data delivery enabler for vertical applications
10.7 Rel-18 Enhancements of 3GPP Northbound and Application Layer interfaces and APIs
10.8 Charging Aspects of B2B
10.9 NRF API enhancements to avoid signalling and storing of redundant data
10.10 GBA_U Based APIs
10.11 Other aspects

11 Artificial Intelligence (AI)/Machine Learning (ML)
11.1 AI/ML model transfer in 5GS
11.2 AI/ML for NG-RAN
11.3 AI/ML management & charging
11.4 NEF Charging enhancement to support AI/ML in 5GS

12 Multicast and Broadcast Services (MBS)
12.1 5G MBS Phase 2
12.2 Enhancements of NR MBS
12.3 UE pre-configuration for 5MBS
12.4 Other MBS aspects

13 Network Slicing
13.1 Network Slicing Phase 3
13.2 Enhancement of NSAC for maximum number of UEs with at least one PDU session/PDN connection
13.3 Enhancement of Network Slicing UICC application for network slice-specific authentication and authorization
13.4 Charging Aspects of Network Slicing Phase 2
13.5 Charging Aspects for NSSAA
13.6 Charging enhancement for Network Slice based wholesale in roaming
13.7 Network Slice Capability Exposure for Application Layer Enablement
13.8 Other slice aspects

14 eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive
14.1 XR (eXtended Reality) enhancements for NR
14.2 Media Capabilities for Augmented Reality
14.3 Real-time Transport Protocol Configurations
14.4 Immersive Audio for Split Rendering Scenarios  (ISAR)
14.5 Immersive Real-time Communication for WebRTC
14.6 IMS-based AR Conversational Services
14.7 Split Rendering Media Service Enabler
14.8 Extended Reality and Media service (XRM)
14.9 Other XR/AR/VR items

15 Mission Critical and emergencies
15.1 Enhanced Mission Critical Push-to-talk architecture phase 4
15.2 Gateway UE function for Mission Critical Communication
15.3 Mission Critical Services over 5MBS
15.4 Mission Critical Services over 5GProSe
15.5 Mission Critical ad hoc group Communications
15.6 Other Mission Critical aspects

16 Transportations (Railways, V2X, aerial)
16.1 MBS support for V2X services
16.2 Air-to-ground network for NR
16.4 Interconnection and Migration Aspects for Railways
16.5 Application layer support for V2X services; Phase 3
16.6 Enhanced NR support for high speed train scenario in frequency range 2 (FR2)

17 User Plane traffic and services
17.1 Enhanced Multiparty RTT
17.2 5G-Advanced media profiles for messaging services
17.3 Charging Aspects of IMS Data Channel
17.4 Evolution of IMS Multimedia Telephony Service
17.5 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 3
17.6 UPF enhancement for Exposure and SBA
17.7 Tactile and multi-modality communication services
17.8 UE Testing Phase 2
17.9 5G Media Streaming Protocols Phase 2
17.10 EVS Codec Extension for Immersive Voice and Audio Services
17.11 Other User Plane traffic and services items

18 Edge computing
18.1 Edge Computing Phase 2
18.2 Architecture for enabling Edge Applications Phase 2
18.3 Edge Application Standards in 3GPP and alignment with External Organizations

19 Non-Public Networks
19.1 Non-Public Networks Phase 2
19.2 5G Networks Providing Access to Localized Services
19.3 Non-Public Networks Phase 2

20 AM and UE Policy
20.1 5G AM Policy
20.2 Enhancement of 5G UE Policy
20.3 Dynamically Changing AM Policies in the 5GC Phase 2
20.4 Spending Limits for AM and UE Policies in the 5GC
20.5 Rel-18 Enhancements of UE Policy

21 Service-based items
21.1 Enhancements on Service-based support for SMS in 5GC
21.2 Service based management architecture
21.3 Automated certificate management in SBA
21.4 Security Aspects of the 5G Service Based Architecture Phase 2
21.5 Service Based Interface Protocol Improvements Release 18

22 Security-centric aspects
22.1 IETF DTLS protocol profile for AKMA and GBA
22.2 IETF OSCORE protocol profiles for GBA and AKMA
22.3 Home network triggered primary authentication
22.4 AKMA phase 2
22.5 5G Security Assurance Specification (SCAS) for the Policy Control Function (PCF)
22.6 Security aspects on User Consent for 3GPP services Phase 2
22.7 SCAS for split-gNB product classes
22.8 Security Assurance Specification for AKMA Anchor Function Function (AAnF)
22.9 Other security-centric items

23 NR-only items
23.1 Not band-centric
23.1.1 NR network-controlled repeaters
23.1.2 Enhancement of MIMO OTA requirement for NR UEs
23.1.3 NR MIMO evolution for downlink and uplink
23.1.4 Further NR mobility enhancements
23.1.5 In-Device Co-existence (IDC) enhancements for NR and MR-DC
23.1.6 Even Further RRM enhancement for NR and MR-DC
23.1.7 Dual Transmission Reception (TxRx) Multi-SIM for NR
23.1.8 NR support for dedicated spectrum less than 5MHz for FR1
23.1.9 Enhancement of NR Dynamic Spectrum Sharing (DSS)
23.1.10 Multi-carrier enhancements for NR
23.1.11 NR RF requirements enhancement for frequency range 2 (FR2), Phase 3
23.1.12 Requirement for NR frequency range 2 (FR2) multi-Rx chain DL reception
23.1.13 Support of intra-band non-collocated EN-DC/NR-CA deployment
23.1.14 Further enhancements on NR and MR-DC measurement gaps and measurements without gaps
23.1.15 Further RF requirements enhancement for NR and EN-DC in frequency range 1 (FR1)
23.1.16 Other non-band related items
23.2 Band-centric
23.2.1 Enhancements of NR shared spectrum bands
23.2.2 Addition of FDD NR bands using the uplink from n28 and the downlink of n75 and n76
23.2.3 Complete the specification support for BandWidth Part operation without restriction in NR
23.2.4 Other NR band related topics

24 LTE-only items
24.1 High Power UE (Power Class 2) for LTE FDD Band 14
24.2 Other LTE-only items

25 NR and LTE items
25.1 4Rx handheld UE for low NR bands (<1GHz) and/or 3Tx for NR inter-band UL Carrier Aggregation (CA) and EN-DC
25.2 Enhancement of UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
25.3 Other items

26 Network automation
26.1 Enablers for Network Automation for 5G phase 3
26.2 Enhancement of Network Automation Enablers

27 Other aspects
27.1 Support for Wireless and Wireline Convergence Phase 2
27.2 Secondary DN Authentication and authorization in EPC IWK cases
27.3 Mobile IAB (Integrated Access and Backhaul) for NR
27.4 Further NR coverage enhancements
27.5 NR demodulation performance evolution
27.6 NR channel raster enhancement
27.7 BS/UE EMC enhancements for NR and LTE
27.8 Enhancement on NR QoE management and optimizations for diverse services
27.9 Additional NRM features phase 2
27.10 Further enhancement of data collection for SON (Self-Organising Networks)/MDT (Minimization of Drive Tests) in NR and EN-DC
27.11 Self-Configuration of RAN Network Entities
27.12 Enhancement of Shared Data ID and Handling
27.13 Message Service within the 5G system Phase 2
27.14 Security Assurance Specification (SCAS) Phase 2
27.15 Vehicle-Mounted Relays
27.16 SECAM and SCAS for 3GPP virtualized network products
27.17 SECAM and SCAS for 3GPP virtualized network products
27.18 MPS for Supplementary Services
27.19 Rel-18 enhancements of session management policy control
27.20 Seamless UE context recovery
27.21 Extensions to the TSC Framework to support DetNet
27.22 Multiple location report for MT-LR Immediate Location Request for regulatory services
27.23 Enhancement of Application Detection Event Exposure
27.24 General Support of IPv6 Prefix Delegation in 5GS
27.25 5G Timing Resiliency System
27.26 MPS when access to EPC/5GC is WLAN
27.27 Data Integrity in 5GS
27.28 Security Enhancement on RRCResumeRequest Message Protection

28 Administration, Operation, Maintenance and Charging-centric Features
28.1 Introduction
28.2 Intent driven Management Service for Mobile Network phase 2
28.3 Management of cloud-native Virtualized Network Functions
28.4 Management of Trace/MDT phase 2
28.5 Security Assurance Specification for Management Function (MnF)
28.6 5G performance measurements and KPIs phase 3
28.7 Access control for management service
28.8 Management Aspects related to NWDAF
28.9 Management Aspect of 5GLAN
28.10 Charging Aspects of TSN
28.11 CHF Distributed Availability
28.12 Management Data Analytics phase 2
28.12 5G System Enabler for Service Function Chaining
28.13 Other Management-centric items

29 Other Rel-18 Topics

If you find them useful then please get the latest document from here.

Related Posts

Monday, 15 July 2024

Disaggregation of 5G Core (5GC) Network

When talking about mobile networks, we generally talk about disaggregation and virtualization of the RAN rather than the core. The 5G Core Network was also designed with disaggregation in mind, supporting service-based architecture (SBA) where Network Functions (NFs) are modular and can be deployed as microservices.

The 5G Core (5GC) is the foundation for Standalone 5G (5G SA) networks where the end users can experience the power of 'real' 5G. A newly published forecast report by Dell’Oro Group pointed out that the Mobile Core Network (MCN) market 5-year cumulative revenue forecast is expected to decline 10 percent (2024-2028). The reduction in the forecast is caused by severe economic headwinds, primarily the high inflation rates, and the slow adoption of 5G SA networks by Mobile Network Operators (MNOs).

While most people think of 5G Core Network as a single entity, in reality it contains many different network functions that can be supplied by different vendors. One way to select the vendors is based on grouping of NFs based on functionality as shown in the picture above. Here we have categorised them into User Plane & Mobility, Subscriber Data Management, Routing & Selection, and Policy & Charging. 

An example of of this disaggregation can be seen in the image above where Telenor worked with partners to build a truly multi-vendor, 5G core environment running on a vendor-neutral platform. According to their announcement

“The main component of 5G-SA is the 5G mobile core, the ‘brain’ of the 5G system. Unfortunately, most 5G core deployments are still single vendor dependent, with strong dependencies on that vendor’s underlying proprietary architecture. This single-vendor dependency can be a killer for innovation. It restricts open collaboration from the broader 5G ecosystem of companies developing new technology, use cases, and services that the market expects,” explains Patrick Waldemar, Vice President and Head of Technology in Telenor Research.

As an industry first, Telenor, along with partners, have established to build a truly multi-vendor, 5G core environment running on a vendor-neutral platform. The multi-vendor environment consists of best of breed Network Functions from Oracle, Casa-Systems, Enea and Kaloom, all running on Red Hat Openshift, the industry’s leading enterprise Kubernetes platform.

“To protect the 5G infrastructure from cyber threats, we deployed Palo Alto Networks Prisma Cloud Compute, and their Next Generation Firewall is also securing Internet connectivity for mobile devices. Red Hat Ansible Automation Platform is being used as a scalable automation system, while Emblasoft is providing automated network testing capabilities. The 5G New Radio (NR) is from Huawei,” says Waldemar.

In their whitepaper on "How to build the best 5G core", Oracle does a very similar grouping of the NFs like the way I have shown at the top and highlights what they supply and which partner NFs they use.

When the mobile operator Orange announced the selection of suppliers for their 5G SA networks in Europe, the press release said the following:

Orange has chosen the following industrial partners:

  • Ericsson’s 5G SA core network for Belgium, Spain, Luxembourg and Poland
  • Nokia’s 5G SA core network for France and Slovakia 
  • Nokia’s Subscriber Data Management for all countries
  • Oracle Communications for 5G core signaling and routing in all countries

I was unable to find out exactly which NFs would be supplied by which vendor but you get an idea.

Finally, I have depicted four scenarios for deployment and which Cloud Native Environment (CNE) would be used. In a single vendor core, the CNE, even though from a third party, could belong to either the vendor themselves (scenario 1) or may be suggested by the operator (scenario 2). 

In case of a multi-vendor deployment, it is very likely that each vendor would use their own CNE (scenario 4) rather than one suggested by the operator or belonging to the lead vendor (scenario 3).

If you have been involved in trial/test/deployment of a multi-vendor 5G Core, would love to hear your feedback on that as well as this post.

Related Posts

Thursday, 27 June 2024

Short Tutorial on Mission Critical Services in LTE and 5G

Over the years we have looked at the standards development, infrastructure development and even country specific mission critical solutions development in various blog posts. In this post we are sharing this short new tutorial by Mpirical on mission critical services in LTE and 5G. The video is embedded below:

Related Posts

Friday, 7 June 2024

Attack Surfaces for Different Generations of Mobile Technologies

At DEF CON 31 last year, Tracy Mosley, Vulnerability Researcher at Trenchant presented a talk titled "Nothin’ but a G Thang - The Evolution of Cellular Networks" (background of title). The abstract of the talk says:

In this talk we will walk through each step of cellular evolution, starting at 2G and ending at 5G. The never-ending attack and defend paradigm will be clearly laid out. In order to understand the attack surface, I’ll cover network topology and protocol. For each cellular generation, I will explain known vulnerabilities and some interesting attacks. In response to those vulnerabilities, mitigations for the subsequent cellular generation are put in place. But as we all know, new mitigations mean new opportunities for attackers to get creative. While I will explain most cellular-specific terminology, a familiarity with security concepts will help to better understand this talk. Basic foundations of communications systems, information theory or RF definitely make this talk more enjoyable, but are absolutely not necessary. It’s a dense topic that is highly applicable to those working on anything that touches the cellular network!

The talk is embedded below:

The presentation can be downloaded from here.

Related Posts

Wednesday, 22 May 2024

Real-world Deployment of Digital Twin and Private Cellular at St Pancras Railway Station

PAULEY are a dynamic UK-based SME at the forefront of the exciting emerging market in big data and interactive tools for business. Pioneers in Spatial Computing, our specialist team are working with clients operating in key industries and sectors including transport, safety critical industries and the education and training sector, to embed innovative digital technology into their business processes.

At Athonet's Uptime 2022 conference, Phil Pauley, CEO at Pauley Interactive, spoke about real-life deployment of Digital Twin and Private Cellular at St Pancras railway station. His talk is embedded below:

There is another playlist shared on PAULEY's YouTube channel that us embedded below:

You can read more about their work with HS2 here.

Related Posts

Monday, 6 May 2024

6G and Other 3GPP Logos

The Project Coordination Group (PCG) of 3GPP recently approved a new logo for use on specifications for 6G, during their 52nd PCG meeting, hosted by ATIS in Reston, Virginia. As with previous logos, surely people in general will use them not just for 3GPP 6G compliant products, but for all kinds of things.

Over the years many people have reached out to me to ask for 3GPP logos, even though they are available publicly. All 3GPP logos, from 3G to 6G is available in the Marcoms directory here. In addition to the logo, each directory also lists guidance for use of the logos. For example, 3GPP does not allow the use of the logo as shown on the left in the image on top of the post while the one on the right is okay.

Surely there isn't an issue for general use but for anyone wishing to use the logos for their products, equipment, documentation or books, they will have to strictly comply with the rules.

Related Posts

Friday, 5 April 2024

A Different Approach for Mobile Network Densification

I am fascinated by and have previously written blog posts about transparent antennas. Back in 2019 NTT Docomo announced that they have been working with glass manufacturer AGC to create a new transparent antenna that can work with a base station to become an antenna. Then in 2021, NTT Docomo and AGC announced that they have developed a prototype technology that efficiently guides 28-GHz 5G radio signals received from outdoors to specific locations indoors using a film-like metasurface lens that attaches to window surfaces. Transparent antennas/lens are one of the pillars of Docomo’s 6G vision as can be seen here.

Every year at Mobile World Congress I look for a wow product/demo. While there were some that impressed me, the suite of products from Wave by AGC (WAVEANTENNA, WAVETHRU and WAVETRAP) blew me away. Let’s look at each of them briefly:

WAVEANTENNA is the transparent glass antenna which is generally installed indoors, on a window or a glass pane. It can be used to receive signals from outdoors (as in case of FWA) or can be used to broadcast signal outdoors (for densification based on inside-out coverage). In the newer buildings that has thermal insulation films on the glass, the radio signals are highly attenuated in either direction, so this solution could work well in that scenario in conjunction with WAVETHRU.

The WAVETHRU process applies a unique laser pattern to the glazing with 30 µm laser engraved lines that are nearly invisible to the naked eye. Treatment is so gentle, it does not affect the physical properties of the glazing, which remain the same. This radio-friendly laser treatment improves the indoor radio signal by around 25 dB, to achieve almost the same level of performance as the street signal. Just 20% to 30% of the window and floors 0 to 4 need to be treated to improve the indoor signal on all frequency ranges under 6GHz.

In case of coverage densification by providing inside-out radio signals, WAVETRAP can be used for EM wave shielding by stopping back-lobes within the building. 

This video from WAVE by AGC explains the whole densification solution:

 

Now the question is, why was I impressed with this solution? Regular readers of this and the Telecoms Infrastructure Blog will have noticed the various solutions I have been writing about for mobile network densification in downtown areas and historic cities with listed buildings where limited space for infrastructure deployment presents several challenges. 

In brief, we can categorise these challenges as follows:

  • Physical Space Constraints like lack of space or strict regulations as in case of listed buildings and heritage sites. 
  • Aesthetics and Visual Impact could be an important consideration in certain historic city centres. Deploying large antennae or towers can clash with the architectural character and heritage of the area and may require concealing antennae within existing structures like chimneys, bus shelters, phone boxes & lampposts, or using disguised designs like fake trees to minimize visual impact.
  • Technical Challenges can arise in dense urban environments due to interference from neighbouring cells, unreliable backhaul connectivity, interruptions in the power supply due to siphoning, etc.
  • Community Engagement and Perception is another important area to consider. There is no shortage of NIMBY (Not in my back yard) activists that may oppose new infrastructure due to health concerns, aesthetics, or fear of property devaluation. Engaging with the community, providing accurate information about EMF exposure, and addressing misconceptions are crucial.
  • Regulatory and Permitting Hurdles that may arise due to many cities and councils imposing zoning and permits requirements. Obtaining permits for infrastructure deployment involves navigating local regulations, zoning laws, and historic preservation boards. There may also be height restrictions that may hinder optimal antenna placement.
  • Finally, Cost and ROI are important consideration factors as all of the above increases the costs as well as the time required. Customized designs, site acquisition, and compliance with regulations are one of the major factors that not only increase costs but also delays infrastructure rollouts. Operators often weigh the benefits of improved coverage and capacity against all the expenses and headaches of infrastructure deployment and then decide on what to deploy and where.

A solution like WAVEANTENNA in conjunction with WAVETHRU and WAVETRAP can significantly reduce the hurdles and improve coverage significantly. 

While I have talked about the solution in general, it can also be applied indoors to Wi-Fi, in addition to 4G/5G. This may be useful in case of Enterprise Networks where appearance is of importance and probably not of much use in case of warehouses or Industrial/Factory Networks. 

Do let me know what you think.

Related Posts

Friday, 22 March 2024

Research Challenges for the Advancement of Vehicular Networking

It's been a while since we covered V2X as a topic on this blog. If you are not well versed with CAVs and V2X, we recommend you to watch our tutorials on the 3G4G page here.

The networking channel hosted a seminar on 'Vehicular networking' last month. Quoting from the webinar preview:

Looking back at the last decade, one can observe enormous progress in the domain of vehicular networking. Many ongoing activities focus on the design of cooperative perception, distributed computing, and novel safety solutions. Many projects have been initiated to validate the theoretic work in field tests and protocols are being standardized. We are now entering an era that might change the game in road traffic management. Many car makers already supply their recent brands with cellular and Wi-Fi modems, also adding C-V2X and ITS-G5 technologies. We now intend to shift the focus from basic networking principles to open challenges in cooperative computing support and even on how to integrate so-called vulnerable road users into the picture. Edge computing is currently becoming one of the core building blocks of cellular networks, including 5G, and it is necessary to study how to integrate ICT components of moving systems. The panellists will discuss from an industrial perspective the main research challenges for the advancement of vehicular networking and the novelties that we can expect to see coming in the short term. Panellists with extensive experience in Internet measurements, networks related to sustainable development goals, and highly-localized earth observation networks will discuss these topics and participate in a Q&A session with the audience.

The presentations were not shared but the video of the panel discussion is as follows:

The following speakers presented the following talks:

  • Vehicular Networking? by Onur Altintas, Toyota North America R&D (0:04:55)
  • Collaborative Perception Sharing for Connected Autonomous Vehicles by Fan Bai, General Motors Global R&D (0:15:00)
  • The future of vehicular networking by Frank Hofmann, Robert Bosch GmbH (0:23:25)
  • The future of vehicular networks and path to 6G by Dr.-Ing. Volker Ziegler, Nokia (0:35:15)
  • Panel Discussion with all speakers and  (0:44:30)

Related Posts