Pages

Understand WLAN Offload

Showing posts with label 3GPP. Show all posts
Showing posts with label 3GPP. Show all posts

Sunday, 20 July 2014

LA-LTE and LAA


Recently came across a presentation by Ericsson where they used the term LA-LTE. I asked a few colleagues if they knew or could guess what it means and they all drew blank. I have been blogging about Unlicensed LTE (a.k.a. LTE-U) on the Small Cells blog here. This is a re-branding of LTE-U

LA-LTE stands for 'Licensed Access' LTE. In fact the term that has now been adopted in a recent 3GPP workshop (details below) is Licensed Assisted Access (LAA).

Couple of months back I blogged in detail about LTE-U here. Since then, 3GPP held a workshop where some of the things I mentioned got officially discussed. In case you want to know more, details here. I have to mention that the operator community is quite split on whether this is a better approach or aggregating Wi-Fi with cellular a better approach.

The Wi-Fi community on the other hand is unhappy with this approach. If cellular operators start using their spectrum than it means less spectrum for them to use. I wrote a post on the usage of Dynamic Spectrum Access (DSA) Techniques that would be used in such cases to make sure that Wi-Fi and cellular usage does not happen at the same time, leading to interference.

Here is a presentation from the LTE-U workshop on Use cases and scenarios, not very detailed though.



Finally, the summary presentation of the workshop. As it says on the final slide "The current SI proposal focuses on carrier aggregation operations and uses the acronym LAA (Licensed Assisted Access)", you would be seeing more of LAA.


Saturday, 17 May 2014

NFV and SDN - Evolution Themes and Timelines


We recently held our first Virtual Networks SIG event in Cambridge Wireless. There were some great presentations. The one by the UK operator EE summarised everything quite well. For those who are not familiar with what NFV and SDN is, I would recommend watching the video on my earlier post here.

One of the term that keeps being thrown around is 'Orchestration'. While I think I understand what it means, there is no easy way to explain it. Here are some things I found on the web that may explain it:
Orchestration means Automation, Provisioning, Coordination and Management of Physical and Virtual resources.  
Intelligent service orchestration primarily involves the principles of SDN whereby switches, routers and applications at Layer 7 can be programmed from a centralized component called the controller with intelligent decisions regarding individual flow routing in real time.
If you can provide a better definition, please do so.
There are quite a few functions and services that can be virtualised and there are some ambitious timelines.

ETSI has been working on NFV and as I recently found out (see tweet below) there may be some 3GPP standardisation activity starting soon.
Anyway, here is the complete presentation by EE:



There was another brilliant presentation by Huawei but the substance was more in the talk, rather than the slides. The slides are here in case you want to see and download.

Related post:



Thursday, 16 January 2014

3GPP Rel-12 and Future Security Work


Here is the 3GPP presentation from the 9th ETSI Security workshop. Quite a few bits on IMS and IMS Services and also good to see new Authentication algorithm TUAK as an alternative to the widely used Milenage algorithm.



Sunday, 1 December 2013

Quick summary on LTE and UMTS / HSPA Release-12 evolution by 3GPP



A quick summary from 3GPP about the Release-12 progress (Jun. 2014 release planned) from the recent ETSI Future Mobile Summit. Presentation and video embedded below





Wednesday, 27 November 2013

ETSI Summit on Future Mobile and Standards for 5G



Edited from the original in 3GPP News:

The ETSI Future Mobile Summit has heard how the mobile internet will evolve over the next ten to fifteen years, and how 3GPP systems will ensure future stability as the network copes with an explosive growth in complexity and usage.


With 3GPP providing the evolutionary framework for mobility, via its Releases of new functionality and features, the more radical thinking, at the Summit, came in the form of Research projects and some future focused industry initiatives, such as the WWRF, the METIS Project and the DVB Project.

In his keynote address, Mario Campolargo - of the European Commission - introduced a new initiative on research & innovation that will provide momentum to funded work on research. The 5G Public Private Partnership is being launched as a blueprint for the deployment of 5G, in the years after 2020. 



In summing up the Summit’s main themes, the ETSI CTO, Adrian Scrase identified some certainties; “...traffic will continue to increase, connected devices will increase dramatically over time, new device types will significantly contribute to that increase (e.g., probes, sensors, meters, machines etc) and new sectors will bring new priorities (e.g, critical infrastructures).”

On the concept of 5G, Mr. Scrase reported that ultra-reliable 5G networks should, among other things, enable the tactile internet, the perception of infinite capacity and bring in augmented reality.



Download the presentations:
5G, the way forward!
Mario Campolargo, Director, Net Futures, DG Connect, European Commission
A new initiative 5GPPP, to accelerate and structure research & innovation."...Industry to co-create the "vision" and build global convergence by end 2015.
Who needs 5G?
Hans D. Schotten, University of Kaiserslautern
Long Term Evolution of LTE (linear evolution) or Something new (5G)?
Why 5G?
Rahim Tafazolli, Director of CCSR and 5GIC, The university of Surrey
Perceived infinite capacity, a new communication paradigm for 5G and Beyond
The 5G mobile and wireless communications system 
Afif Osseiran, Project Coordinator of METIS
Explanation of 5G scenarios (selected) and examples of 5G technology components
Next generation wireless for a cognitive & energy-efficient future
Nigel Jefferies, Wireless World Research Forum Chairman
"New technology challenges: huge number of nodes, latency , energy efficiency, backhaul and over the air signaling design...May require a whole new approach to: physical layer, air interface and spectrum usage, resources management & optimization..."
 3GPP RAN has started a new innovation cycle which will be shaping next generation cellular systems
Spectrum for 5G, a big deal?
Jens Zander, KTH, Royal Institute of Technology  
 A World Divided - The coverage world versus the capacity world
Opportunities for TV services over future mobile networks
Nick Wells, Chairman Technical Module, DVB
 Can broadcasters and mobile industry cooperate to define a new worldwide standard that will benefit both broadcasters and mobile industry?
3GPP core network & services evolution
Atle Monrad, 3GPP CT Chairman
Architecture evolution, More new nodes, CS-domain removal?, new ways of design of networks?
The impact of NFV on future mobile
Uwe Janssen, Deutsche Telekom, lead delegate to Network Functions Virtualisation ISG
 The challenge for Operators, Suppliers and Standards Bodies
The tactile internet - Driving 5G
Gerhard Fettweis, Technical University of Dresden
 3D Chip-Stacks & High-Rate Inter-Chip Communications, Monitoring / Sensing, Tactile internet - Latency Goals
Summit conclusions
Adrian Scrase, ETSI CTO, Head of 3GPP MCC
 Includes the 'Standardization Challenges' raised by the Summit.

Friday, 11 October 2013

3GPP Rel-12 SON Status


Considering how popular the Release-11 SON post have been, here is Rel-12 status that was presented in the SON Conference in October 2013. Complete presentation embedded below:



You may also be interested in reading a comprehensive report prepared by David Chambers here.

Friday, 7 June 2013

3GPP Public Safety focus in Rel-12


Public Safety is still a hot topic in the standards discussion and on this blog as well. Two recent posts containing presentations have been viewed and downloaded like hotcakes. See here and here.

3GPP presented on this topic in the Critical Communications World that took place last month. The following is from the 3GPP press release:

The ’Critical Communications World’ conference, held recently in Paris, has focused largely on the case for LTE standardized equipment to bring broadband access to professional users, by meeting their high demands for reliability and resilience.
Balazs Bertenyi, the 3GPP SA Chair, reported on the latest status of the first 3GPP features for public safety, in particular those covering Proximity services (Direct mode) and Group call. He spoke of the need to strike a balance between more or less customisation, to make use of commercial products while meeting the specific requirements for Public Protection and Disaster Relief (PPDR).
To ensure that these needs are met, Balazs Bertenyi called for the wholehearted participation of the critical communications community in 3GPP groups, by sending the right people to address the technical questions and obstacles that arise during the creation of work items.

A presentation and video from that event is embedded below:




For more details see here.

Wednesday, 5 December 2012

Quick update on 3GPP Release-12 progress

Some months back, I blogged about the 3GPP Rel-12 workshop, since then there has been progress on the Rel-12 features. Here is a quick update from 3GPP:



You can download the PPT from Slideshare.

Other related posts:


Monday, 5 November 2012

3GPP Standards Self Organizing Networks

The following is a presentation by 3GPP on Self-Organising Networks in the SON Conference 2012:



A basic tutorial on SON is available also on 3GPP website here.

A detailed list of 3GPP work items on SON is available to view and download from here.

Monday, 18 June 2012

3GPP Release-12 and beyond


3GPP Recently held a workshop on "Release 12 and Onward" to identify common requirements for future 3GPP radio access technologies. The goal of the workshop is to investigate what are the main changes that could be brought forward to evolve RAN toward Release 12 and onward. It is recommended that presentations in the workshop include views on:
- Requirements
- Potential technologies
- Technology roadmap for Releases 12, 13 and after

The discussions from the workshop should be used to define the work plan for Release 12 and onward in TSG-RAN.

The list of presentations and links, etc. are below and I have also embedded the Summary and Draft report, both of which can be downloaded from 3GPP website or slideshare. Here is a list of different topics and the presentations that covered them:


AdHoc Networks
AdHoc Networks - RWS-120035


Antennas, Beamforming, Transmitters, Receivers
3D-beamforming - RWS-120002
Vertical sectorization/3D beamforming via AAS - RWS-120005
Advanced receivers and joint Tx/Rx optimisation - RWS-120005
Network assistance for IC receivers - RWS-120005
Support of Active Antenna Systems - RWS-120006
Advanced transmitter beamforming - RWS-120010
Advanced receiver cancellation - RWS-120010
Vertical and 3D beamforming - RWS-120011
MIMO Enhancements - RWS-120014
New antenna configurations and 3D MIMO - RWS-120014
UE AAS (Active Antenna System) [Detailed] - RWS-120015 / RWS-120049
Cloud of Antennas (CoA) Concept - RWS-120016
Support of Massive MIMO Technology - RWS-120016
Full Dimension MIMO (FD-MIMO) System [Detailed] - RWS-120021 / RWS-120046
Cloud-RAN: Benefits and Drawbacks - RWS-120021 / RWS-120046
Further Enhanced Receivers - RWS-120022
Multiple antenna evolution - RWS-120025
3D beamforming - RWS-120026
Vision of 3D MIMO - RWS-120029
Massive MIMO & 3D MIMO - RWS-120034
Potential MIMO Enhancements - RWS-120035
Advanced Antenna Technology - RWS-120035
DL MIMO Enhancement - RWS-120037
Performance Requirement for 8Rx at eNB - RWS-120037
UE Receiver Enhancements - RWS-120039
DL MU-MIMO Enhancement - RWS-120039
Enhancement of MIMO, CoMP - RWS-120040
Advanced MIMO - RWS-120040
MIMO and COMP - RWS-120041
Role of Advanced Receivers - RWS-120041
Advanced Interference Handling - RWS-120041
Interference Suppression Subframes (ISS) and IRC Receiver [Detailed] - RWS-120051


Applications (Apps)
Efficiency for diverse small data applications - RWS-120011
Device Service/Application Awareness - RWS-120018
I-Net:”I”-centric mobile network design philosophy - RWS-120024
Application Aware Comm - RWS-120036 / RWS-120050


Backhaul and Relay
Relay backhaul enhancement - RWS-120011
LTE Backhaul - RWS-120013
Relay - RWS-120025
CoMP, backhaul and X2 interface - RWS-120027 / RWS-120048
Mobile Relay And Relay Backhaul Enhancement - RWS-120029


Baseband
Baseband resource pooling and virtualization - RWS-120011


Capacity and Coverage
Higher system capacity - RWS-120010
Capacity for Mobile Broadband: Requirements and Candidate technologies - RWS-120012
Increase N/W capacity by 1000 times - RWS-120020
Coverage Enhancement - RWS-120037
Capacity Enhancement - RWS-120038 / RWS-120047
Cell-edge Throughput Improvement - RWS-120038 / RWS-120047


Carrier Aggregation, Flexible Bandwidths and Multiflow
LTE multiflow / Inter-site CA - RWS-120002
LTE/HSDPA Carrier Aggregation - RWS-120002
Multiflow Enhancements - RWS-120002
Multi-Stream Aggregation - RWS-120006
Provide mechanisms for Flexible Bandwidth Exploitation - RWS-120008
Carrier aggregation enhancement - RWS-120019
Inter-eNB Carrier Aggregation - RWS-120021 / RWS-120046
Evolution of Carrier Aggregation - RWS-120036 / RWS-120050
CA of Alternative Spectra - RWS-120042


Cells, Carriers, C/U Planes
C/U plane split & Phantom cell - RWS-120010
Phantom cell by single/separate nodes - RWS-120010
Phantom cell: Other topics - RWS-120010
New Carrier Type for Primary Component Carrier - RWS-120011
Flexible/Reconfigurable Cells - RWS-120023
New carrier-type (NCT) enhancements - RWS-120026
Amorphous cells - RWS-120034
New Carrier Types - RWS-120035
Non-Orthogonal Access - RWS-120039
Dynamic Area Construction for UE - RWS-120040


Cognitive Radio
Cognitive radio - RWS-120034
Cognitive Networking - RWS-120036 / RWS-120050


Coordinated MultiPoint (CoMP)
CoMP Enhancements - RWS-120014
CoMP/ICIC enhancement - RWS-120019
CoMP Enhancements - RWS-120023
CoMP enhancements - RWS-120026
CoMP Technologies - RWS-120027 / RWS-120048
Enhanced CoMP - RWS-120029
Potential CoMP Enhancements - RWS-120035
CoMP - RWS-120037
CoMP Enhancement for Indoor Environment - RWS-120040
Overhauling DL CoMP - RWS-120042


Device, Handsets, UE's
Additional UE Enhancements - RWS-120018
Coordination : Multi-mode UE - RWS-120024


D2D / Device-to-Device
Device-to-Device - RWS-120003
LTE Device to Device - Proximity Based Services - RWS-120004
LTE device to device - RWS-120007
LTE direct communication - RWS-120007
Device-to-Device Communications - RWS-120014
D2D Discovery/Communication - RWS-120016
3GPP Proximity Services (ProSe) / D2D - RWS-120022
Device-to-Device communications - RWS-120026
Device-to-Device communication - RWS-120036 / RWS-120050


Data Rates and Throughputs
Higher data rate and user-experienced throughput - RWS-120010
Fairness of user throughput - RWS-120010


Deployments
LTE in Local Area Deployments & Enhancements - RWS-120004
Energy Efficient Local Area Deployments - RWS-120004
Scaling for Mass Deployment - RWS-120008
Flexible and cost-efficient NW deployments - RWS-120010
Considerations on dense NW deployment - RWS-120019


Energy Consumption, Efficiency and Savings
Energy efficiency - RWS-120005
Reduce energy consumption - RWS-120008
Energy Saving - RWS-120014
UE Power Saving - RWS-120036 / RWS-120050
NB Power Saving - RWS-120036 / RWS-120050
Energy Saving Enhancements with CoMP - RWS-120040
Energy Saving with Centralized eNB - RWS-120040


Herogeneous Networks (HetNets)
Optimisation of Het Nets performance - RWS-120005
Improved Support for Heterogeneous Networks - RWS-120006
Network hyper-densification: LTE HetNet2.0 - RWS-120007
Multi-layer HetNet Deployments - RWS-120016
HetNet for HSPA - RWS-120017
HetNet Enhancements - RWS-120023
HetNet Mobility - RWS-120029
Small cells & HetNet - RWS-120031
HetNet - RWS-120037
HetNet Enhancements for HeNB - RWS-120040


HSDPA / HSUPA / HSPA+ Enhancements
HSPA UL Enhancements - RWS-120003
Uplink Enhancements - RWS-120006
UMTS evolution: enhancing CS voice on DCH - RWS-120007
High Speed Packet Access - RWS-120012
HSPA RRM enhancement - RWS-120024
HSPA+ further evolution - RWS-120034


Interworking (HSPA, LTE)
Coordination : HSPA/LTE e-interworking - RWS-120024
Inter-RAT Coordination/CA - RWS-120037


Local-Area Access (Small Cells)
Local-Area Access - RWS-120003
LTE in Local Area Deployments & Enhancements - RWS-120004
LTE Local Area Enhancements - RWS-120004
LTE Local Area Enhancement Areas - RWS-120004
enhanced Local Area (eLA) - RWS-120010
Local Area Enhancements - RWS-120022
Improved Local Area Mobility - RWS-120022


LTE
LTE for Nomadic and Fixed Use - RWS-120018
E-PDCCH enhancement - RWS-120019
Efficiency : Paging Optimization - RWS-120024


LTE Hotspot and Indoor Enhancements (LTE-Hi)
Hotspot and Indoor Enhancements (LTE-Hi) - RWS-120006
Hotspot/indoor Scenario (LTE-Hi) - RWS-120025
Indoor & Hotspot Enhancements (LTE-Hi) [Detailed] - RWS-120029
Possible Study Items for Indoor Environment - RWS-120040


M2M / Machine Type Communications (MTC)
Machine Type Communications - RWS-120003
Improved Support for MTC - RWS-120006
Machine-to-Machine: The Internet of Things - RWS-120014
Machine Type Communications: a new ecosystem - RWS-120014
Wireless MTC and RAN optimizations for MTC - RWS-120016
Low-Cost MTC UE - RWS-120017
MTC + eDDA (enhanced Diverse data application) - RWS-120019
Further Enhancements to Support MTC - RWS-120023
MTC - RWS-120025
MTC enhancements - RWS-120026
M2M - RWS-120029
MTC and migration of traffic from 2G - RWS-120031
Machine Type Communications enhancements - RWS-120034
Machine Type Communications - RWS-120035
Extension triggered by growing M2M traffic - RWS-120038 / RWS-120047
LTE-based M2M - RWS-120041


MBMS / eMBMS
eMBMS Enhancements - RWS-120007
eMBMS - RWS-120013
UHD Multimedia Broadcast/Multicast Service - RWS-120036 / RWS-120050


Mesh Networks
Mesh Networks - RWS-120018


Network Density
Network density: Scenarios - RWS-120010


Network Architecture and Operation
Easier network operation, tolerance to failure - RWS-120005
System Architecture - RWS-120032
Evolution of LTE Networks - RWS-120034


Positioning
Positioning Enhancements - RWS-120006


Public Safety
Public Safety - RWS-120030
Operation of Public Safety System via LTE - RWS-120031
Public safety’s future in LTE [Detailed] - RWS-120033


Self Organising Networks (SON) and Minimisation of Drive Testing (MDT)
SON Evolution - RWS-120002
Enhanced MDT - RWS-120011
Network Self-Optimisation - RWS-120014
SON and MDT - RWS-120017
HetNet SON - RWS-120029
MDT & Energy Saving - RWS-120029
Autonomous Interference Coordination - RWS-120029
Large scale multi-layer centralized cooperative radio - RWS-120034
MDT Enhancement - RWS-120036 / RWS-120050
SON Enhancements - RWS-120036 / RWS-120050
MDT and eDDA - RWS-120041


Small Cells (HNB/HeNB)
UMTS evolution: small cells - RWS-120007
Wide & Local area enhancements - RWS-120010
Small Cells - RWS-120014
Small Cell Enhancement in Rel-12 - RWS-120021 / RWS-120046
HeNB Enhancement - RWS-120036 / RWS-120050
Efficient Usage of Macro and Small Cells - RWS-120038 / RWS-120047
Low-cost Low Power Nodes (LC-LPN) - RWS-120038 / RWS-120047
Small-Cell Improvements: System Aspects - RWS-120041


Spectrum
Enhanced spectrum efficiency - RWS-120005
Spectrum efficiency: eLA topics - RWS-120010
Scenarios for spectrum extension - RWS-120010
Spectrum and spectrum usage - RWS-120012
Wider Spectrum Utilization - RWS-120016
Spectral efficiency for LTE - RWS-120017
New Spectrum for Mobile Broadband Access - RWS-120021 / RWS-120046
Enabling Technologies for New Spectrum - RWS-120021 / RWS-120046
Radio Propagation - RWS-120021 / RWS-120046
Opportunistic Use of Unlicensed Spectrum for D2D Local Traffic - RWS-120023
Flexible Spectrum Utilization - RWS-120024
Spectrum Related: New Bands And CA Band Combinations - RWS-120029
Spectrum - RWS-120032
Hybrid access scheme - RWS-120034
Spectrum - RWS-120035
Spectrum and Transmission Efficiency - RWS-120039
Spectrum-Agile LTE - RWS-120041


TDD / TD-LTE
TD-LTE - RWS-120014
TDD-specific aspects - RWS-120014
TDD adaptive reconfiguration - RWS-120034
Efficient Usage of Dual Duplex Modes - RWS-120038 / RWS-120047
LTE TDD Small-Cell versus WiFi - RWS-120041


Testing
Testing and Certification - RWS-120022


Traffic and Signalling Overhead
Efficient support of diverse traffic characteristics - RWS-120005
Efficient support for variety of traffic types - RWS-120010
Enhancements for variety of traffic types - RWS-120010
Very high traffic (and signalling) scenarios - RWS-120017
Control Plane Overhead Reduction - RWS-120021 / RWS-120046
Further Enhancements to Support Diverse Data Applications - RWS-120023
Efficiency : Small data services in high mobility - RWS-120024


User Experience
Improve User experience - RWS-120009
User Challenges - RWS-120032


Video streaming, call
RAN Enhancements for Video Streaming QoE - RWS-120023
RAN Enhancements for Internet Video Call - RWS-120023


WiFi / WLAN
Cooperation between LTE/HSPA and WiFi - RWS-120005
Unlicensed spectrum: LTE & WLAN - RWS-120007
LTE integration with other RATs - RWS-120014
WiFi integration: For Beyond Rel-12 - RWS-120017
LTE-WLAN Interworking - RWS-120023
Coordination With WiFi - RWS-120029
Smarter opportunistic usage of Wi-Fi - RWS-120031
LTE TDD Small-Cell versus WiFi - RWS-120041


Others
Other identified techniques for LTE - RWS-120005
Efficient Transactions - RWS-120035
Link Enhancement Considerations - RWS-120035
Intra-RAT cooperation / Inter-RAT cooperation - RWS-120036 / RWS-120050


Here is the summary from the workshop:

Complete list of Presentations

RWS-120002Release 12 and beyond for C^4 (Cost, Coverage, Coordination with small cells and Capacity)NSN
RWS-120003Views on Rel-12Ericsson & ST-Ericsson
RWS-120004LTE evolving towards Local Area in Release 12 and beyondNokia Corporation
RWS-120005Views on Release 12Orange
RWS-120006Views on Rel-12 and onwards for LTE and UMTSHuawei Technologies, HiSilicon
RWS-1200073GPP RAN Rel-12 & BeyondQualcomm
RWS-120008New Solutions for New Mobile Broadband ScenariosTelefonica
RWS-120009Telecom Italia requirements on 3GPP evolutionTelecom Italia
RWS-120010Requirements, Candidate Solutions & Technology Roadmap for LTE Rel-12 OnwardNTT DOCOMO, INC.
RWS-120011Where to improve Rel-12 and beyond: Promising technologiesNEC
RWS-120012Deutsche Telekom Requirements and Candidate TechnologiesDeutsche Telekom
RWS-120013Release 12 Prioritization ConceptsDish Networks
RWS-120014Towards LTE RAN EvolutionAlcatel-Lucent
RWS-120015UE AAS (Active Antenna System)Magnolia Broadband
RWS-120016Requirements and Technical Considerations for RAN Rel.12 & OnwardsFujitsu Limited
RWS-120017Operator requirements on future RAN functionalityTeliaSonera
RWS-120018AT&T View of Release 12 in the North America MarketplaceAT&T
RWS-120019Major drivers, requirements and technology proposals for LTE Rel-12 OnwardPanasonic
RWS-120020Efficient spectrum resource usage for next-generation N/WSK Telecom
RWS-120021Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120022LTE Rel-12 and BeyondRenesas Mobile Europe
RWS-120023LTE Rel-12 and Beyond: Requirements and Technology ComponentsIntel
RWS-120024Considerations on further enhancement and evolution of UMTS/LTE network in R12 and onwardsChina Unicom
RWS-120025Views on LTE R12 and BeyondCATT
RWS-120026A proposal for potential technologies for Release 12 and onwardsETRI
RWS-120027A view on requirements on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120028India market Requirements for Rel. 12 and beyondCEWiT
RWS-120029Views on LTE Rel-12 & BeyondCMCC
RWS-120030LTE addressing the needs of the Public Safety CommunityIPWireless
RWS-120031Vodafone view on 3GPP RAN Release 12 and beyondVodafone
RWS-120032An Operator’s View of Release 12 and BeyondSprint
RWS-120033Public Safety Requirements for Long Term Evolution REL-12U.S. Department of Commerce
RWS-120034Views on 3GPP Rel-12 and BeyondZTE
RWS-120035Considerations for LTE Rel-12 and beyondMotorola Mobility
RWS-120036LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120037Views on REL-12 and OnwardsChina Telecom
RWS-120038KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120039Evolving RAN Towards Rel-12 and BeyondSHARP
RWS-120040Views on enhancement of system capacity and energy efficiency toward Release12 and onwardHitachi
RWS-120041Beyond LTE-A: MediaTek’s view on R12MediaTek
RWS-120042Potential Technologies and Road Map for LTE Release 12 and BeyondITRI, HTC
RWS-120043New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom
RWS-120046Technologies for Rel-12 and onwardsSamsung Electronics
RWS-120047KDDI’s Views on LTE Release 12 onwardsKDDI
RWS-120048A view on Rel-12 and onwards from an operator’s viewpointSoftbank Mobile
RWS-120049UE AAS (Active Antenna System)Magnolia Broadband
RWS-120050LG’s view on evolution of LTE in Release 12 and beyondLG Electronics
RWS-120051New concept to maximize the benefit of interference rejection at the UE receiver: interference suppression subframes (ISS)Broadcom

More technically minded people want to explore the 3GPP website for the workshop links here: http://3gpp.org/ftp/workshop/2012-06-11_12_RAN_REL12/

Draft report that gives more insight into the presentations as follows: