Tuesday, 11 January 2022

An Introduction to Minimization of Drive Testing (MDT)

Over the last few years, Ralf Kreher has done some fantastic posts on Minimization of Drive Testing (MDT) on this blog (links at the bottom of this post). To complement that, here is a basic introductory tutorial looking at what exactly is meant by MDT and how it's done. 

Video embedded below:

The slides from the presentation are available here.

Please check out our 3GPP SON Series videos here.

Related Posts:

Tuesday, 4 January 2022

What is RF Front-End (RFFE) and why is it so Important?

As more technologies, frequency bands, antennas, etc., are crammed in our smartphones and tablets, it becomes essential for these devices to keep performing despite what technologies and spectrum are in use at any instant of time. This requires specialist design of the RF front end in our devices. Wikipedia explains it as:

In a radio receiver circuit, the RF front end, short for radio frequency front end, is a generic term for all the circuitry between a receiver's antenna input up to and including the mixer stage. It consists of all the components in the receiver that process the signal at the original incoming radio frequency (RF), before it is converted to a lower intermediate frequency (IF). In microwave and satellite receivers it is often called the low-noise block downconverter (LNB) and is often located at the antenna, so that the signal from the antenna can be transferred to the rest of the receiver at the more easily handled intermediate frequency.

Qualcomm is very active in this area as can be seen from the chart in the Tweet above. Back in October, Qualcomm announced ultraBAW, their new generation of micro acoustic filter technology that expands their RF front-end (RFFE) portfolio and opens up new 5G services and applications. They have a short intro video explaining RFFE:

It is also interesting to see from the Tweet above that on an average baseband + RFFE + connectivity chips cost Apple nearly $55 per device.

The analyst firm CCS Insight have also done some good work explaining RFFE and their analyst Wayne Lam has written a few detailed articles on this topic. Here are the links if you want to read further:

  • Advances in RF Front-Ends Made 5G Phones Possible (link)
  • Advances in 5G RF Front-Ends Lead to Longer Battery Life (link)

Their RFFE videos playlist is embedded below.

Also worth noting that a good modem and RF front-end, especially with 5G, can make a lot of difference in what speeds and coverage you can get

Related Posts:

Monday, 27 December 2021

Top 10 Posts for 2021 and Top 5 Videos

Here are the top posts from this year, from most popular to the tenth most popular, in descending order of popularity:

1. A look at 5G Applications, Application Functions & Application Servers, April 2021

2. Different Types of RAN Architectures - Distributed, Centralized & Cloud, July 2021

3. AT&T Cybersecurity Experts Provide 5G Security Overview, July 2021

4. Qualcomm Explains 5G mmWave Future & Integrated Access and Backhaul (IAB), September 2021

5. 5G RAN Functional Splits, March 2021

6. O-RAN Introduction for Beginners, June 2021

7. Network Slicing using User Equipment Route Selection Policy (URSP), November 2021

8. Positioning in 5G networks, April 2021

9. An Early View of 3GPP Release-18 5G-Advanced Topics, October 2021

10. Introduction to 5G Reduced Capability (RedCap) Devices, July 2021

In addition, the following two posts from last year made it in the top 10 as well, so including them below:

⦿ EPS Fallback in 5G Standalone Deployments, Feb 2020

⦿ Positioning Techniques for 5G NR in 3GPP Release-16, October 2020

In addition to the above, we have a very popular and active YouTube channel, here are the top 5 videos that we posted this year: 

1. 5G Radio Access Network Architecture: The Dark Side of 5G, January 2021

2. Webinar: 5G Security Briefing, March 2021

3. Beginners: Open RAN Terminology – Virtualization, Disaggregation & Decomposition, June 2021

4. 6G Training Course Part 1: Introduction, January 2021

5. Beginners: Connecting Underground Railway Network, June 2021

Do you have a favourite 3G4G blog post or video? Please feel free to add in comments.

Related Posts

Monday, 20 December 2021

Impact of 5G on Lawful Interception and Law Enforcement.

At Telecoms Europe 5G 2021 event, David Anstiss, Senior Solutions Architect, SS8 Networks gave a talk on Impact of 5G on lawful interception and law enforcement. The talk provided an insight in​to how 5G is impacting lawful interception, and the challenges faced by intelligences agencies as they work with communication service providers to gather information, to safeguard society.

The talk, followed by Q&A is embedded below:

You may also find this blog post titled, 'Five Challenges of Gathering Digital Evidence in a 5G World' by David Anstiss, interesting.

Related Posts:

Monday, 13 December 2021

5G & AI Powered Smart Hospitals

5G Telehealth has been one of the main driving use cases for upgrading the infrastructure. While some use cases definitely make sense, some others like remote surgery will most likely never happen, at least the way it's depicted today.

At the GSMA Mobile 360 APAC - 5G Industry Community Summit, Michael Fung, Chief Information Officer from CHUK Medical Centre presented a nice talk detailing how they see 5G & AI powered hospitals of the future. The video of his talk is embedded at the bottom of this post.

There have also been some other discussions on 5G & healthcare recently. Here are the links if you want to explore this topic further:

The US FDA recently published a one pager looking at how Service level agreements (SLAs) can enable 5G-enabled medical device use cases by documenting how a medical device communication requirement is met by the unique characteristics of 5G networks and the roles and responsibilities of the stakeholders involved in offering safe and effective 5G-enabled healthcare to patients.

IEEE Access has a detailed paper on this topic by the same authors. Quoting from the abstract:

Service level agreements (SLAs) can enable 5G-enabled medical device use cases by documenting how a medical device communication requirements are met by the unique characteristics of 5G networks and the roles and responsibilities of the stakeholders involved in offering safe and effective 5G-enabled healthcare to patients. However, there are gaps in this space that should be addressed to facilitate the efficient implementation of 5G technology in healthcare. Current literature is scarce regarding SLAs for 5G and is absent regarding SLAs for 5G-enabled medical devices. This paper aims to bridge these gaps by identifying key challenges, providing insight, and describing open research questions related to SLAs in 5G and specifically 5G-healthcare systems. This is helpful to network service providers, users, and regulatory authorities in developing, managing, monitoring, and evaluating SLAs in 5G-enabled medical systems.

Here is the video from GSMA 5G Industry Community Summit Part 2:

Related Posts:

Tuesday, 7 December 2021

What will 5G Standalone deliver?


Surely you have heard me talk about the benefits of 5G Standalone and why is it needed. At Telecoms Europe 5G 2021, Dr. Kim K Larsen, CTIO, T-Mobile Netherlands, presented a talk on what exactly will 5G Standalone deliver. The video of his talk and slides are embedded below.

If mobile economics is an area of interest, you may want to check out his old blog posts which are quite detailed. Here.

Related Posts:

Tuesday, 30 November 2021

Will Wi-Fi Help 3GPP Bring Reliable Connectivity Indoors?

I have argued a few times now that it would make much more sense to be able to make access and core independent of each other. 3GPP 5G Standards already have a feature available from Release-16 onwards that enables this with 5G Core, Standalone networks.

We use our smart devices currently for voice and data communications. When we are indoor, many times the data goes over Wi-Fi. This is what tempted operators to move to WiFi for voice solution as well. Many operators are now enabling Voice of WiFi in their network to provide reliable voice coverage indoors.

While this works currently without any issues, when operators start offering new native services and applications, like XR over 5G, the current approach won't help. When our devices are connected over Wi-Fi at present, they are unable to take advantage of operator core or services. With access and core independence, this will no longer be an issue.

I gave a short (15 mins) virtual presentation at 5G Techritory this year. I argued not just for WWC but also looked at what 5G features have a potential for revolution. It's embedded below.

Related Posts:

Tuesday, 23 November 2021

3GPP Presentations from CEATEC Japan 2021

3GPP and its Japanese Organizational Partners TTC (Telecommunication Technology Committee) and ARIB (Association of Radio Industries and Businesses) hosted a “3GPP Summit” online workshop at CEATEC 2021, back in October. The event was co-located with the Japanese Ministry of Internal Affairs and Communications (MIC) and 5G Mobile Communications Promotion Forum (5GMF) 5G day at the event. Here is a summary of the event from 3GPP news:

The “3GPP Summit” featured all three Technical Specification Group (TSG) Chairs and one Japanese leader from each group. After the presentations, they exchanged their views and expectations for 3GPP work – as the industry starts to look at research beyond 5G. The event attracted almost 700 people, keen to understand what is going on in 3GPP.

The first session covered Release 17 and 18 evolution, with each TSG Chair and a domestic leader jointly presenting. Wanshi Chen introduced the latest schedule of each release and potential projects for Release 18 with the result of 3GPP Release 18 workshop held in June. Then, Hiroki Takeda presented some key features on Release 17 such as Redcap, RAN slicing and evolution of duplex.

TSG SA Chair, Georg Mayer introduced the group’s latest activities alongside Satoshi Nagata, covering key Release 17 features, such as enhanced support on Non-public Networks, Industrial IoT and Edge computing.

Next up was the TSG CT Chair, Lionel Morand, presenting the latest activities and roadmap for Core Network evolution from Release 15 to 17. Hiroshi Ishikawa also presented, covering 5G core protocol enhancements and some activities driven by operators.

The second part of the session focused more on activities ‘Beyond 5G’. First, Takaharu Nakamura introduced the latest activities on the topic in Japan. A panel discussion followed, with Satoshi Nagata joining the other 3GPP speakers, to give feedback on 5G developments and future use.

You can download the PPT of presentations from 3GPP site here or get the PDF from 3G4G page here.

Please feel free to add your thoughts as comments below.

Related Posts

Tuesday, 16 November 2021

5G-Advanced Flagship Features

I am starting to get a feeling that people may be becoming overwhelmed with all the new 5G features and standards update. That is why this presentation by Mikael Höök, Director Radio Research at Ericsson, at Brooklyn 6G Summit (B6GS) caught my attention. 

The talk discusses the network infrastructure progress made in the previous two years to better illustrate the advanced 5G timeline to discovering 6G requirements. At the end of the talk, there was a quick summary of the four flagship features that are shown in the picture above. The talk is embedded below, courtesy of IEEE TV

In addition to this talk, October 2021 issue of Ericsson Technology Review covers the topic "5G evolution toward 5G advanced: An overview of 3GPP releases 17 and 18". You can get the PDF here.

I have covered the basics of these flagship features in the following posts:

Please feel free to add your thoughts as comments below.

Related Posts

Thursday, 11 November 2021

Network Slicing using User Equipment Route Selection Policy (URSP)

Google announced that its latest smartphone OS will include support for 5G network slicing. Last week Telecom TV brought this news to my attention. The article explains:

It's a move designed to leverage its expertise in devices in order to give it the edge over its rival hyperscalers.

It comes in two flavours. The first is for enterprise-owned handsets, and routes all data sent and received by a device over the network slices provided by that company's mobile operator. Android 12 gives operators the ability to manage slices using a new dynamic policy control mechanism called User Equipment Route Selection Policy (URSP). URSP enables devices to automatically switch between different network slices according to which application they are using. For example, someone working for a financial institution might require a highly-secure network slice for sending and receiving sensitive corporate data, but will then require a reliable, high-throughput, low-latency slice so they can participate in a video meeting.

The second flavour is implemented in the work profile. For years, enterprises have had the option of creating work profiles on Android devices – irrespective of whether they are owned by the organisation or the individual – to use as a separate repository for enterprise apps and data. When Android 12 comes out next year, enterprises will be able to route data to and from that repository over a network slice.

Google said it has already carried out network slicing tests with both Ericsson and Nokia using test versions of its recently released Pixel 6 smartphone running on the as-yet-unreleased Android 12 OS.

Last week Taiwanese operator Far EasTone (FET) and Ericsson announced they have completed the world’s first proof of concept (PoC) for simultaneously connecting multiple network slices per device running on Android 12 commercial release. The press release said:

The trial, carried out on FET’s 5G standalone (SA) infrastructure built on Ericsson’s radio access network and cloud-native Core network, successfully demonstrated the 5G user equipment slicing policy feature (User Equipment Route Selection Policy, or URSP) on multiple Android devices. This marks a breakthrough in network slicing capabilities on a 5G standalone network and paves the way for further ecosystem development in this important area.

With more 5G networks evolving to standalone architecture around the globe, end-to-end network slicing, which includes Ericsson RAN Slicing to secure Quality of Service (QoS) differentiation, plays a key role in enabling new services for end users, with which multiple virtual 5G networks are created on top of one physical network. The 5G trial, in collaboration with FET, Ericsson and Android, went even further in network slicing capabilities by introducing and demonstrating 5G user equipment (UE) slicing policy (URSP) features that allow devices to simultaneously operate on dynamic policy control and selection between multiple 5G network slices. This enables the steering of applications and services with specific requirements to defined slices without switching devices.

Multiple slices allow devices to have multiple profiles to secure different levels of experience, security, and privacy requirements, based on the needs of the different applications and in correspondence with the user profile.  For instance, a device can have a personal profile with private data from apps or off-work entertainment, and a work profile with enterprises productivity apps. With URSP features, employers can customize the work profile with increased security and enable better use of RAN Slicing with QoS so that enterprise-related apps can work even during network congestion.

Some security-sensitive apps, such as mobile banking, can also benefit from different routing mechanisms of the traffic enabled by URSP. For instance, the banking app would not need to send its traffic to the internet and then to the app server as it does today. Instead, it could go straight to the app server and avoid the routing through internet. With the shortest route by connecting to a defined slice, users could reduce the risk of being attacked by hackers.

In their technical whitepaper on Network Slicing, Samsung explains: 

Along with the concept of network slicing and features in the RAN and Core network, UE Route Selection Policy (URSP) is introduced as a way to manage network slice information for the UE. URSP is a network slice feature enabled by the PCF which informs the network slice status to the UE via the AMF. In 4G network systems, it was near impossible to install new services in the network for a UE. But through the URSP feature, 5G network operators can easily configure new service for a UE. Figure 12 (top of this blog post) shows the difference in network slice selection in 4G and 5G Network. In 5G network, slice selection policy can be configured dynamically through URSP, while slice selection policy is pre-defined and cannot be changed dynamically in 4G network.

URSP contains OSId, AppId, IP descriptors to define the application and Single-Network Slice Selection Assistance Information (S-NSSAI), Data Network Name (DNN), Session and Service Continuity (SSC) mode information for the application and network slice mapping.

The S-NSSAI identifies each network slice service and provides information to properly assign network slice/functions. An S-NSSAI is comprised of:

  • A Slice/Service type (SST), which refers to the expected network slice behavior in terms of features and services;
  • A Slice Differentiator (SD), which is an optional information that complements the Slice/Service type(s) to differentiate amongst multiple network slices of the same Slice/Service type.

3GPP allows the use of the Slice Differentiator (SD) field that can build customized network slices. The SD field can be used to describe services, customer information and priority.

Here is a short video from Mpirical explaining 5G UE Route Selection.

It it worth reminding here that this feature, like many of the other 5G features, is dependent on 5G Core. We hope that the transition to 5G Standalone Networks happens as soon as possible.

Related Posts: