Showing posts sorted by date for query Release 18. Sort by relevance Show all posts
Showing posts sorted by date for query Release 18. Sort by relevance Show all posts

Thursday, 20 March 2025

AI/ML in 3GPP: Progress, Challenges, and the Road to 6G

The ETSI Artificial Intelligence (AI) Conference – Status, Implementation and Way Forward of AI Standardization – took place from 5-7 February 2024 at ETSI, Sophia Antipolis, France. This in-person event provided a valuable platform for experts and peers to exchange insights, explore demos and posters, and discuss AI and Machine Learning (ML) within the Information and Communications Technology (ICT) sector.

The event agenda is available online, and all presentations can be accessed here.

AI/ML Work in 3GPP: Insights from Dr. Juan Montojo

Dr. Juan Montojo, a leading figure in 3GPP TSG Radio Access Networks (RAN) and rapporteur for the work item Artificial Intelligence/Machine Learning for NR air interface (NR_AIML_air), delivered an insightful presentation titled "Overview of AI/ML related work in 3GPP." His talk covered the current status of AI/ML in 3GPP and prospects as 6G priorities begin to take shape.

Further details are available in the 3GPP post and presentation.

Focus Areas in 3GPP AI/ML Work

Dr. Montojo outlined the critical focus areas for AI/ML within 3GPP:

  • Infrastructure and Operator Control: Ensuring that operators maintain control over AI/ML implementations within their networks.
  • Performance Monitoring: Establishing standards for monitoring AI/ML model performance, activation, and deactivation.
  • Air Interface Extensions: Developing extensions to support AI/ML-specific use cases.
  • Data Standards: Defining standardized processes for data collection, AI/ML model transfer, and delivery.
  • Testing and Interoperability: Ensuring consistent device behavior and interoperability in AI/ML deployments.

Principles Guiding AI/ML in 3GPP

The AI/ML work in 3GPP is grounded in principles that echo regulatory frameworks like the European Commission’s AI Act:

  • Data Security and Integrity: Safeguarding data confidentiality and ensuring integrity.
  • Privacy and User Consent: Respecting data privacy and user anonymity, with explicit consent mechanisms.
  • Operator Control: Empowering operators with control over data collection, transfer initiation, termination, and management.
  • Future-Proof Design: Ensuring the system design is extendable to accommodate future advancements.

AI/ML Training Models: Current Practices and Future Directions

  • Off-line Training: Currently, AI/ML models in 3GPP assume off-line training, where models are fully trained before deployment in commercial networks.
  • On-line Training and Federated Learning: Future 6G developments may introduce on-line training. 3GPP WG SA2 is already exploring federated learning to enhance network automation.

Challenges and Opportunities for AI/ML in Cellular Networks

Dr. Montojo emphasized both the strengths and limitations of AI/ML in cellular networks:

  • Strengths: AI/ML excels in tackling complex, non-linear problems that traditional methods struggle with. It enhances localized, data-driven decision-making.
  • Challenges: High energy consumption remains a concern for both network and device sides. Standardization must balance flexibility with technical consistency.

The Path Forward: AI/ML in 6G

AI/ML is expected to become pervasive in 6G, influencing all aspects of system design and operation. Notable expectations include:

  • Rel-21 Specifications: AI/ML will be incorporated from the outset, supporting evolving use cases and dynamic requirements.
  • Flexible Standardization: Future specifications may be less rigid, enabling AI/ML to drive optimization through data-driven parameterization.

Conclusion

AI/ML's integration into 3GPP workstreams is advancing steadily, laying the groundwork for significant contributions to 6G networks. While AI/ML models themselves are not being standardized, the supporting frameworks around data collection, model management, and interoperability are set to shape the future of cellular technology.

For anyone invested in AI/ML's role in telecoms, understanding these foundational steps is essential as we move towards a more automated, intelligent, and adaptable network landscape.

Related Posts

Tuesday, 31 December 2024

Top Posts and Videos of 2024

The 3G4G Blog continues to be a favourite among tech enthusiasts, with over 17 years of content. This year, we reached a remarkable milestone: over 3 million views in 2024, pushing our total to nearly 19 million views since Blogger began tracking in July 2010.

As 2024 draws to a close, we're excited to share the Top 10 most-viewed blog posts of the year and the Top 5 most-watched videos on our YouTube channel. It’s worth noting that while these posts and videos garnered significant attention this year, many of them were published earlier. For clarity, we've included the month and year each was posted.

Top 10 Most-Viewed Blog Posts in 2024

Interestingly, none of the blog posts published in 2024 made it into the overall Top 10, despite some being highly popular. To highlight this year's efforts, here are the Top 5 blog posts published in 2024:

Top 5 Blog Posts Published in 2024

Top 5 Most-Watched Videos on Our YouTube Channel in 2024

We’d love to hear from you! Let us know in the comments below which post or video was your favorite—or if there’s a topic you’d like us to cover in 2025. Your feedback helps shape the future of The 3G4G Blog.

Here’s to another year of insightful content—thank you for being a part of our journey!

Related Posts: 

Tuesday, 10 December 2024

Tutorial Session on Non-Terrestrial Networks (NTNs) and 3GPP Standards from 5G to 6G

Over five years ago, we introduced the concept of Non-Terrestrial Networks (NTN) in our NTN tutorial and wrote IEEE ComSoc article, "The Role of Non-Terrestrial Networks (NTN) in Future 5G Networks." Since then, the landscape has seen remarkable transformations with advancements in standards, innovations in satellite connectivity, and progress in real-world applications.

The 2024 Global Forum on Connecting the World from the Skies, held on November 25–26, served as a pivotal platform for stakeholders across the spectrum; policymakers, industry leaders, and technical experts. Jointly organized by the International Telecommunication Union (ITU) and Saudi Arabia’s Communications, Space & Technology Commission (CST), the event underscored NTNs' growing importance in advancing global connectivity.

A key highlight of the forum was Tutorial Session 2, delivered by Gino Masini, Principal Researcher, Standardization at Ericsson. The session, titled "Non-Terrestrial Networks and 3GPP Standards from 5G to 6G," provided an in-depth look at the evolution of NTNs and their integration into mobile networks.

Key Takeaways from the Session included:

  • 3GPP Standardization Milestones:
    • Release 17: NTN integration began, paving the way for seamless 5G coverage.
    • Release 18: Enhanced features and capabilities, focusing on improved satellite-terrestrial convergence.
    • Release 19 (Ongoing): Lays the foundation for natively integrated NTN frameworks in 6G.
  • Unified Networks in 6G: A focus on radio access network architecture demonstrated how NTN can evolve from a supporting role to becoming an intrinsic component of future 6G systems.
  • Industry Impact: The session highlighted how convergence between satellite and terrestrial networks is no longer aspirational but a tangible reality, fostering a truly unified global connectivity ecosystem.

With NTNs now integral to 3GPP's vision, the groundwork has been laid for scalable satellite connectivity that complements terrestrial networks. The insights shared at the forum emphasize the importance of collaboration across industry and standards organizations to unlock the full potential of NTNs in both 5G and 6G.

For those interested, the full tutorial slides and session video are embedded below.

Gino has kindly shared the slides that can be downloaded from here.

Related Posts

Tuesday, 26 November 2024

Low Latency Power Saving with Low Power-Wake Up Signal/Receiver (LP-WUS/LP-WUR)

Power-saving methodologies have been integral to all generations of 3GPP technologies, aimed at reducing the power consumption of user equipment (UEs) and other battery-dependent devices. Some of the stringent requirements of 5G, such as achieving a 10-year battery life for certain IoT devices, have necessitated further optimisation of power consumption. To address this, 3GPP Release 16 introduced the Wake-Up Signal (WUS) power-saving mechanism, designed to significantly reduce energy usage in UEs. For a detailed technical explanation, ShareTechnote provides an excellent overview.

The concept of wake-up radios has been explored for over a decade. In a 2017 blog post, Ericsson highlighted how researchers had been working on designing wake-up radios and receivers, initially aimed at IEEE 802.11 (Wi-Fi) technologies. This idea later gained traction in 3GPP discussions, culminating in a study conducted during Release 18. The findings are comprehensively documented in 3GPP TR 38.869: Study on low-power wake-up signal and receiver for NR (Release 18).

Quoting from the introduction of 3GPP 38.869:

5G systems are designed and developed targeting for both mobile telephony and vertical use cases. Besides latency, reliability, and availability, UE energy efficiency is also critical to 5G. Currently, 5G devices may have to be recharged per week or day, depending on individual's usage time. In general, 5G devices consume tens of milliwatts in RRC idle/inactive state and hundreds of milliwatts in RRC connected state. Designs to prolong battery life is a necessity for improving energy efficiency as well as for better user experience. 

Energy efficiency is even more critical for UEs without a continuous energy source, e.g., UEs using small rechargeable and single coin cell batteries. Among vertical use cases, sensors and actuators are deployed extensively for monitoring, measuring, charging, etc. Generally, their batteries are not rechargeable and expected to last at least few years as described in TR 38.875. Wearables include smart watches, rings, eHealth related devices, and medical monitoring devices. With typical battery capacity, it is challenging to sustain up to 1-2 weeks as required. 

The power consumption depends on the configured length of wake-up periods, e.g., paging cycle. To meet the battery life requirements above, eDRX cycle with large value is expected to be used, resulting in high latency, which is not suitable for such services with requirements of both long battery life and low latency. For example, in fire detection and extinguishment use case, fire shutters shall be closed and fire sprinklers shall be turned on by the actuators within 1 to 2 seconds from the time the fire is detected by sensors, long eDRX cycle cannot meet the delay requirements. eDRX is apparently not suitable for latency-critical use cases. Thus, the intention is to study ultra-low power mechanism that can support low latency in Rel-18, e.g. lower than eDRX latency.

Currently, UEs need to periodically wake up once per DRX cycle, which dominates the power consumption in periods with no signalling or data traffic. If UEs are able to wake up only when they are triggered, e.g., paging, power consumption could be dramatically reduced. This can be achieved by using a wake-up signal to trigger the main radio and a separate receiver which has the ability to monitor wake-up signal with ultra-low power consumption. Main radio works for data transmission and reception, which can be turned off or set to deep sleep unless it is turned on.

The power consumption for monitoring wake-up signal depends on the wake-up signal design and the hardware module of the wake-up receiver used for signal detecting and processing. 

The study should primarily target low-power WUS/WUR for power-sensitive, small form-factor devices including IoT use cases (such as industrial sensors, controllers) and wearables. Other use cases are not precluded, e.g.XR/smart glasses, smart phones. 

As opposed to the work on UE power savings in previous releases, this study will not require existing signals to be used as WUS. All WUS solutions identified shall be able to operate in a cell supporting legacy UEs. Solutions should target substantial gains compared to the existing Rel-15/16/17 UE power saving mechanisms. Other aspects such as detection performance, coverage, UE complexity, should be covered by the evaluation.

Qualcomm's blog post looking at 'How will wireless innovations foster a greener, more sustainable future?' is also worth reading on this topic.

Related Posts

Wednesday, 14 August 2024

3GPP Release 18 Description and Summary of Work Items

The first official release of 3GPP TR 21.918: "Release 18 Description; Summary of Rel-18 Work Items" has been published. It's the first official version of 5G-Advanced. Quoting from the report: 

Release 18 specifies further improvements of the 5G-Avanced system. 

These improvements consist both in enhancements of concepts/Features introduced in the previous Releases and in the introduction of new topics.

Some of the key improvements are:

  • a further integration of the Satellite (NTN) access (introduced in Rel-17) in the 5G System (5GS), 
  • a more efficient support of Internet of Things (IoT), Machine-Type Communication (MTC), including by satellite coverage
  • and also several aspects of proximity communication and location (Sidelink, Proximity, Location and Positioning, better support of the industrial needs (Verticals, Industries, Factories, Northbound API), Multicast and Broadcast Services (MBS), Network Slicing or Uncrewed Aerial Vehicles (UAV).

As for the new topics, some of the key aspects are:

  • Energy Efficiency (EE)
  • Artificial Intelligence (AI)/Machine Learning (ML)
  • eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive communications

The following list is from the v1.0.0 table of contents to make it easier to find the list of topics. If it interests you, download the latest version technical report from the directory here.

5 Satellite / Non-Terrestrial Network (NTN)
5.1 General aspects
5.1.1 User plane: “5G system with satellite backhaul”
5.1.2 Discontinuous coverage: “Satellite access Phase 2”
5.1.3 Radio: "NR NTN enhancements"
5.1.4 Charging and Management aspects of Satelite
5.2 Specific aspects
5.2.1 IoT (Internet of Things) NTN enhancements
5.2.2 Guidelines for Extra-territorial 5G Systems
5.2.3 5G system with satellite access to Support Control and/or Video Surveillance
5.2.4 Introduction of the satellite L-/S-band for NR
5.2.5 Other band-related aspects of satellite

6 Internet of Things (IoT), Machine-Type Communication (MTC)
6.1 Personal IoT and Residential networks
6.2 Enhanced support of Reduced Capability (RedCap) NR devices
6.3 NR RedCap UE with long eDRX for RRC_INACTIVE State
6.4 Application layer support for Personal IoT Network
6.5 5G Timing Resiliency System
6.6 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
6.7 Adding new NR FDD bands for RedCap in Rel-18
6.8 Signal level Enhanced Network Selection
6.9 IoT NTN enhancements

7 Energy Efficiency (EE)
7.1 Enhancements of EE for 5G Phase 2
7.2 Network energy savings for NR
7.3 Smart Energy and Infrastructure

8 Uncrewed Aerial Vehicles (UAV), UAS, UAM
8.1 Architecture for UAV and UAM Phase 2
8.2 Architecture for UAS Applications, Phase 2
8.3 NR support for UAV
8.4 Enhanced LTE Support for UAV

9 Sidelink, Proximity, Location and Positioning
9.1 5GC LoCation Services - Phase 3
9.2 Expanded and improved NR positioning
9.3 NR sidelink evolution
9.4 NR sidelink relay enhancements
9.5 Proximity-based Services in 5GS Phase 2
9.6 Ranging-based Service and sidelink positioning
9.7 Mobile Terminated-Small Data Transmission (MT-SDT) for NR
9.8 5G-enabled fused location service capability exposure

10 Verticals, Industries, Factories, Northbound API
10.1 Low Power High Accuracy Positioning for industrial IoT scenarios
10.2 Application enablement aspects for subscriber-aware northbound API access
10.3 Smart Energy and Infrastructure
10.4 Generic group management, exposure and communication enhancements
10.5 Service Enabler Architecture Layer for Verticals Phase 3
10.6 SEAL data delivery enabler for vertical applications
10.7 Rel-18 Enhancements of 3GPP Northbound and Application Layer interfaces and APIs
10.8 Charging Aspects of B2B
10.9 NRF API enhancements to avoid signalling and storing of redundant data
10.10 GBA_U Based APIs
10.11 Other aspects

11 Artificial Intelligence (AI)/Machine Learning (ML)
11.1 AI/ML model transfer in 5GS
11.2 AI/ML for NG-RAN
11.3 AI/ML management & charging
11.4 NEF Charging enhancement to support AI/ML in 5GS

12 Multicast and Broadcast Services (MBS)
12.1 5G MBS Phase 2
12.2 Enhancements of NR MBS
12.3 UE pre-configuration for 5MBS
12.4 Other MBS aspects

13 Network Slicing
13.1 Network Slicing Phase 3
13.2 Enhancement of NSAC for maximum number of UEs with at least one PDU session/PDN connection
13.3 Enhancement of Network Slicing UICC application for network slice-specific authentication and authorization
13.4 Charging Aspects of Network Slicing Phase 2
13.5 Charging Aspects for NSSAA
13.6 Charging enhancement for Network Slice based wholesale in roaming
13.7 Network Slice Capability Exposure for Application Layer Enablement
13.8 Other slice aspects

14 eXtended, Augmented and Virtual Reality (XR, AR, VR), immersive
14.1 XR (eXtended Reality) enhancements for NR
14.2 Media Capabilities for Augmented Reality
14.3 Real-time Transport Protocol Configurations
14.4 Immersive Audio for Split Rendering Scenarios  (ISAR)
14.5 Immersive Real-time Communication for WebRTC
14.6 IMS-based AR Conversational Services
14.7 Split Rendering Media Service Enabler
14.8 Extended Reality and Media service (XRM)
14.9 Other XR/AR/VR items

15 Mission Critical and emergencies
15.1 Enhanced Mission Critical Push-to-talk architecture phase 4
15.2 Gateway UE function for Mission Critical Communication
15.3 Mission Critical Services over 5MBS
15.4 Mission Critical Services over 5GProSe
15.5 Mission Critical ad hoc group Communications
15.6 Other Mission Critical aspects

16 Transportations (Railways, V2X, aerial)
16.1 MBS support for V2X services
16.2 Air-to-ground network for NR
16.4 Interconnection and Migration Aspects for Railways
16.5 Application layer support for V2X services; Phase 3
16.6 Enhanced NR support for high speed train scenario in frequency range 2 (FR2)

17 User Plane traffic and services
17.1 Enhanced Multiparty RTT
17.2 5G-Advanced media profiles for messaging services
17.3 Charging Aspects of IMS Data Channel
17.4 Evolution of IMS Multimedia Telephony Service
17.5 Access Traffic Steering, Switch and Splitting support in the 5G system architecture; Phase 3
17.6 UPF enhancement for Exposure and SBA
17.7 Tactile and multi-modality communication services
17.8 UE Testing Phase 2
17.9 5G Media Streaming Protocols Phase 2
17.10 EVS Codec Extension for Immersive Voice and Audio Services
17.11 Other User Plane traffic and services items

18 Edge computing
18.1 Edge Computing Phase 2
18.2 Architecture for enabling Edge Applications Phase 2
18.3 Edge Application Standards in 3GPP and alignment with External Organizations

19 Non-Public Networks
19.1 Non-Public Networks Phase 2
19.2 5G Networks Providing Access to Localized Services
19.3 Non-Public Networks Phase 2

20 AM and UE Policy
20.1 5G AM Policy
20.2 Enhancement of 5G UE Policy
20.3 Dynamically Changing AM Policies in the 5GC Phase 2
20.4 Spending Limits for AM and UE Policies in the 5GC
20.5 Rel-18 Enhancements of UE Policy

21 Service-based items
21.1 Enhancements on Service-based support for SMS in 5GC
21.2 Service based management architecture
21.3 Automated certificate management in SBA
21.4 Security Aspects of the 5G Service Based Architecture Phase 2
21.5 Service Based Interface Protocol Improvements Release 18

22 Security-centric aspects
22.1 IETF DTLS protocol profile for AKMA and GBA
22.2 IETF OSCORE protocol profiles for GBA and AKMA
22.3 Home network triggered primary authentication
22.4 AKMA phase 2
22.5 5G Security Assurance Specification (SCAS) for the Policy Control Function (PCF)
22.6 Security aspects on User Consent for 3GPP services Phase 2
22.7 SCAS for split-gNB product classes
22.8 Security Assurance Specification for AKMA Anchor Function Function (AAnF)
22.9 Other security-centric items

23 NR-only items
23.1 Not band-centric
23.1.1 NR network-controlled repeaters
23.1.2 Enhancement of MIMO OTA requirement for NR UEs
23.1.3 NR MIMO evolution for downlink and uplink
23.1.4 Further NR mobility enhancements
23.1.5 In-Device Co-existence (IDC) enhancements for NR and MR-DC
23.1.6 Even Further RRM enhancement for NR and MR-DC
23.1.7 Dual Transmission Reception (TxRx) Multi-SIM for NR
23.1.8 NR support for dedicated spectrum less than 5MHz for FR1
23.1.9 Enhancement of NR Dynamic Spectrum Sharing (DSS)
23.1.10 Multi-carrier enhancements for NR
23.1.11 NR RF requirements enhancement for frequency range 2 (FR2), Phase 3
23.1.12 Requirement for NR frequency range 2 (FR2) multi-Rx chain DL reception
23.1.13 Support of intra-band non-collocated EN-DC/NR-CA deployment
23.1.14 Further enhancements on NR and MR-DC measurement gaps and measurements without gaps
23.1.15 Further RF requirements enhancement for NR and EN-DC in frequency range 1 (FR1)
23.1.16 Other non-band related items
23.2 Band-centric
23.2.1 Enhancements of NR shared spectrum bands
23.2.2 Addition of FDD NR bands using the uplink from n28 and the downlink of n75 and n76
23.2.3 Complete the specification support for BandWidth Part operation without restriction in NR
23.2.4 Other NR band related topics

24 LTE-only items
24.1 High Power UE (Power Class 2) for LTE FDD Band 14
24.2 Other LTE-only items

25 NR and LTE items
25.1 4Rx handheld UE for low NR bands (<1GHz) and/or 3Tx for NR inter-band UL Carrier Aggregation (CA) and EN-DC
25.2 Enhancement of UE TRP and TRS requirements and test methodologies for FR1 (NR SA and EN-DC)
25.3 Other items

26 Network automation
26.1 Enablers for Network Automation for 5G phase 3
26.2 Enhancement of Network Automation Enablers

27 Other aspects
27.1 Support for Wireless and Wireline Convergence Phase 2
27.2 Secondary DN Authentication and authorization in EPC IWK cases
27.3 Mobile IAB (Integrated Access and Backhaul) for NR
27.4 Further NR coverage enhancements
27.5 NR demodulation performance evolution
27.6 NR channel raster enhancement
27.7 BS/UE EMC enhancements for NR and LTE
27.8 Enhancement on NR QoE management and optimizations for diverse services
27.9 Additional NRM features phase 2
27.10 Further enhancement of data collection for SON (Self-Organising Networks)/MDT (Minimization of Drive Tests) in NR and EN-DC
27.11 Self-Configuration of RAN Network Entities
27.12 Enhancement of Shared Data ID and Handling
27.13 Message Service within the 5G system Phase 2
27.14 Security Assurance Specification (SCAS) Phase 2
27.15 Vehicle-Mounted Relays
27.16 SECAM and SCAS for 3GPP virtualized network products
27.17 SECAM and SCAS for 3GPP virtualized network products
27.18 MPS for Supplementary Services
27.19 Rel-18 enhancements of session management policy control
27.20 Seamless UE context recovery
27.21 Extensions to the TSC Framework to support DetNet
27.22 Multiple location report for MT-LR Immediate Location Request for regulatory services
27.23 Enhancement of Application Detection Event Exposure
27.24 General Support of IPv6 Prefix Delegation in 5GS
27.25 5G Timing Resiliency System
27.26 MPS when access to EPC/5GC is WLAN
27.27 Data Integrity in 5GS
27.28 Security Enhancement on RRCResumeRequest Message Protection

28 Administration, Operation, Maintenance and Charging-centric Features
28.1 Introduction
28.2 Intent driven Management Service for Mobile Network phase 2
28.3 Management of cloud-native Virtualized Network Functions
28.4 Management of Trace/MDT phase 2
28.5 Security Assurance Specification for Management Function (MnF)
28.6 5G performance measurements and KPIs phase 3
28.7 Access control for management service
28.8 Management Aspects related to NWDAF
28.9 Management Aspect of 5GLAN
28.10 Charging Aspects of TSN
28.11 CHF Distributed Availability
28.12 Management Data Analytics phase 2
28.12 5G System Enabler for Service Function Chaining
28.13 Other Management-centric items

29 Other Rel-18 Topics

If you find them useful then please get the latest document from here.

Related Posts

Saturday, 30 December 2023

Top 10 Blog Posts and Top 5 Videos for 2023

The 3G4G Blog is our most popular blog, running for over 16 years with over 15.5 million views. With 2023 coming to an end, here are the top 10 most viewed posts from 2023 as well as top 5 most viewed videos. These posts/videos were not necessarily posted this year, so I have added the month and year each of them was posted.

  1. Network Slicing using User Equipment Route Selection Policy (URSP), Nov. 2021
  2. NWDAF in 3GPP Release-16 and Release-17, Feb. 2021
  3. New 5G NTN Spectrum Bands in FR1 and FR2, May 2023
  4. Non-public networks (NPN) - Private Networks by another name, May 2019
  5. How many Cell Sites and Base Stations Worldwide?, Mar. 2023
  6. What is RF Front-End (RFFE) and why is it so Important?, Jan. 2022
  7. 3GPP Release 17 Description and Summary of Work Items, Dec. 2022
  8. Two Types of SMS in 5G, Sep. 2020
  9. ATIS Webinar on "3GPP Release 18 Overview: A World of 5G-Advanced", Feb. 2023
  10. Prof. Ted Rappaport Keynote at EuCNC & 6G Summit 2023 on 'Looking Towards the 6G Era - What we may expect, and why', Aug. 2023

Here are top 5 videos viewed on our YouTube channel in the last year:

  1. Beginners: What is Industrial IoT (IIoT), Feb.2019
  2. Beginners: Radio Frequency, Band and Spectrum, July 2017
  3. Beginners: Different Types of RAN Architectures - Distributed, Centralized & Cloud, July 2021
  4. Beginners: Fixed Wireless Access (FWA), Sep. 2018
  5. Beginners: MNO, MVNO, MVNA, MVNE: Different types of mobile operators, Apr. 2018

Let us know about your favourite post and/or video in the comments below.

Related Posts

Thursday, 3 August 2023

Tutorial: A Quick Introduction to 3GPP

We recently made a beginners tutorial explaining the need for The 3rd Generation Partnership Project (3GPP), its working, structure and provides useful pointers to explore further. The video and slides are embedded below.

You can download the slides from here.

Related Posts

Wednesday, 21 June 2023

3GPP TSG RAN and TSG SA Release-19 Workshop Summary

3GPP recently announced the milestone of reaching 100th plenaries of the three Technical Specification Groups (TSGs) in 3GPP which took place in Taipei last week. If you are unsure what TSGs are, we recently made a tutorial of 3GPP, available here.

During the plenary TSG SA and TSG RAN held workshops on Release 19. The top level link for RAN workshop is here while that for SA is here. SA also has HTML link of the documents here.

The slide above is from the RAN chair's summary provides list of topics that were discussed. The following is the executive summary from the draft workshop report:

The 3GPP TSG RAN Rel-19 face-to-face workshop was held June 15 - June 16, 2023 in Taipei hosted by TAICS (Taiwan Association of Information and Communication Standards) and MediaTek with 174 participants (see Annex A) and 491 Tdocs (see Annex B). A GotoWebinar conference call was carried out during the whole workshop to display discussed documents and to allow listen & talk access for people joining remotely.

The workshop agenda was provided in RWS-230001 and split into 3 main parts:

  • High-level overview proposals for Rel-19: 18 Tdocs handled, 46 not treated, 1 in the end endorsed (RP-230488)
  • Specific RAN1/2/3-led Rel-19 topics: 29 Tdocs handled, 369 not treated
  • RAN4-led Rel-19 topics (for information only): 20 not treated

Note: High-level overview proposals for Rel-19 and RAN4-led Rel-19 topics had the restriction of maximum one contribution led per company.

Some guidance about the workshop was provided on the RAN email reflector on 28.04.23 and 02.05.23.

Time plan versions of the workshop were provided on 02.05.23, 11.06.23 and on 15.06.23.

Workshop inputs were possible from 28.04.23 until the submission deadline 31.05.23 9pm UTC.

(Late Tdoc requests as well as revisions of Tdocs after the Tdoc request deadline 30.05.23 9pm UTC were avoided in order to not complicate the Tdoc handling, like quotas for AI 4 and 6, preparations of the workshop in parallel to RAN #100 and preparations of the summary etc.)

Originally, Thursday 15.06.23 and Friday 16.06.23 morning were planned for presentations of a limited set of 47 workshop contributions (selected by the RAN chair trying to achieve a fair coverage of the topics and interests and taking into account that there were many more inputs that can be handled in a 2 days workshop) and Friday afternoon was reserved for the discussion of a summary of the RAN chair (in RWS-230488). Note: Since the presentation part went faster and the Friday lunch break was skipped, the workshop ended on Friday afternoon earlier than originally planned.

Finally, the RAN chair's summary in RWS-230488 was endorsed indicating the motivations and handling of the workshop, the Rel-19 timeline and load plans and the management and categorization of topics.

TSG SA didn't have a summary slide but SWS-230002, output of drafting session on Consolidated SA WG2 Rel-19 Work, listed the following topics:

  • Satellite Architecure Enhancements
  • XRM Enhancements and Metaverse
  • AI/ML enhancements
  • Multi-access (Dual 3GPP + ATSSS Enh)
  • Integrated Sensing and Communication
  • Ambient IoT
  • Energy Efficiency / Energy Saving as a Service
  • IMS and NG_RTC enhancements
  • Edge Computing Enhancements
  • Proximity Services enhancements 
  • TSC/URLLC/TRS enhancements 
  • Network Sharing 
  • User identities + identification of device behind RG/AP
  • 5G Femto 
  • UAS enhancements 
  • VMR Enhancements 
  • UPEAS Enhancements 

Fattesinh Deshmukh has a summary of 3GPP RAN Rel-19 Workshop on LinkedIn here. Nokia has their summary of the workshop here.

Related Posts

Wednesday, 3 May 2023

Qualcomm Webinar on 'Realizing mission-critical industrial automation with 5G'

Private 5G networks have immense potential to transform industries by improving flexibility within the shop floor of the industries. Industrial 5G networks hold the promise to transform mission-critical industrial automation by using the built-in 5G features of higher bandwidth, lower latency, greater reliability, and improved security.

Some of the ways in which Industrial 5G (I5G) networks will help transform mission-critical industrial networks using automation include:

  • Enhanced Communication: I5G networks will offer faster and more reliable communication between machines, sensors, and other devices. This will lead to better synchronization, increased efficiency, and reduced downtime in industrial processes.
  • High-Quality Video: I5G networks will provide high-quality video streaming, enabling real-time monitoring of industrial processes. This will be particularly useful in applications such as remote inspections, quality control, and process optimization.
  • Edge Computing: I5G networks will support edge computing, that will enable processing of data close to where it is generated. This will help to keep latency to a minimum thereby improve response times and making it possible to perform critical tasks in real-time.
  • Improved Security: I5G networks will provide improved security features along with network slicing, which will enable the creation of secure virtual networks for specific applications or users. This will in-turn help to protect against cyberattacks and ensure the integrity of data.
  • Reduced Downtime: I5G networks will help to reduce downtime by providing real-time monitoring and predictive maintenance capabilities. This will allow identification of potential problems before they cause downtime thereby enabling proactive maintenance and repairs.

Overall, I5G networks have the potential and the capability to significantly improve mission-critical industrial automation by providing faster, more reliable, and secure communication, enabling real-time monitoring and control, and reducing downtime through predictive maintenance capabilities.

In addition, Private/Industrial 5G will help with Time-Sensitive Networking (TSN) by providing a highly reliable and low-latency wireless communication network that can support real-time industrial control and automation applications. TSN is a set of IEEE standards that enable time-critical data to be transmitted over Ethernet networks with very low latency and high reliability.

I5G networks provide a wireless alternative to wired Ethernet networks for TSN applications, which can be advantageous in environments where deploying Ethernet cabling is difficult or costly. With I5G, TSN traffic can be prioritized and transmitted over the network with low latency and high reliability, which is critical for industrial automation and control applications that require precise timing and synchronization.

Moreover, I5G networks can be deployed with network slicing capabilities, allowing for the creation of multiple virtual networks with different performance characteristics tailored to specific applications or user groups. This means that TSN traffic can be isolated and prioritized over other types of traffic, ensuring that critical data is always transmitted with the highest priority and reliability.

Last year, Qualcomm hosted a webinar on 'Realizing mission-critical industrial automation with 5G'. The webinar is embedded below:

Here is the summary of what the webinar includes:

Manufacturers seeking better operational efficiencies, with reduced downtime and higher yield, are at the leading edge of the Industry 4.0 transformation. With mobile system components and reliable wireless connectivity between them, flexible manufacturing systems can be reconfigured quickly for new tasks, to troubleshoot issues, or in response to shifts in supply and demand. 

5G connectivity enables flexibility in demanding industrial environments with key capabilities such as ultra-reliable wireless connectivity, wireless Ethernet, time-sensitive networking (TSN), and positioning. There is a long history of R&D collaboration between Bosch Rexroth and Qualcomm Technologies for the effective application of these 5G capabilities to industrial automation use cases. At the Robert Bosch Elektronik GmbH factory in Salzgitter, Germany, this collaboration has reached new heights by demonstrating time-synchronized control of an industrial robot, and remote positioning of an automated guided vehicle (AGV) over a live, ultra-reliable 5G private network.

Watch the session to learn how:

  • Qualcomm Technologies and Bosch Rexroth are collaborating to accelerate the Industry 4.0 transformation
  • 5G technologies deliver key capabilities for mission-critical industrial automation
  • Distributed control solutions can work effectively across 5G TSN networks
  • A single 5G technology platform solves connectivity and positioning needs for flexible manufacturing

The video is also available on Qualcomm site here and the slides are here.

A shorter video looking behind the tech to see how Qualcomm and Bosch are partnering to enable mission-critical industrial automation over a 5G private network is as follows:

Related Posts

Friday, 3 February 2023

ATIS Webinar on "3GPP Release 18 Overview: A World of 5G-Advanced"

Yesterday, ATIS, one of the seven 3GPP Organizational Partner (OP), delivered on online webinar on 3GPP Release 18 Overview: The World of 5G-Advanced. A summary of the webinar according to ATIS as follows:

As the first release of 5G-Advanced, Release 18 has been progressing well despite the challenges in fully resuming 3GPP face-to-face meetings in 2022.

In this webinar, ATIS provides a high-level summary of 3GPP Release 18: the confirmed Rel-18 timeline, status for the ongoing study and work items, and the newly converted work items from the completed study items. We also give a brief introduction of the preparation for Release 19 aiming for approval of the package of projects in December 2023.

Distinguished speakers included:

  • Wanshi Chen (Qualcomm, Chair of 3GPP RAN Plenary) will provide a view on radio interface and RAN system aspects.
  • Puneet Jain (Intel, Chair of 3GPP System Architecture Group – SA2) will look at whole system capabilities and network aspects.
  • Moderator: Iain Sharp, Principal Technologist, ATIS

The recording of the webinar is embedded below and slides available here.

Just a reminder, 5G covers Release 15, 16 and 17. 5G-Advanced is Release-18 onwards. Ideally, 18, 18 and 20. 6G should start with Release 21. Based on the current industry adoption of 5G, there is no reason to push the next generation on the operators before it's mature and everyone is ready to take it onboard.

Related Posts: